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Abstract

A new set of benchmarks has been developed for the performance eval-

uation of highly parallelsupercomputers. These benchmarks consistof five

parallelkernelsand three simulated applicationbenchmarks. Together they

mimic the computation and data movement characteristicsof large scale

computational fluiddynamics (CFD) applications.

The principaldistinguishingfeature ofthese benchmarks istheir"pencil

and paper" specification--alldetailsof these benchmarks are specifiedonly

algorithmically.In thisway many of the difficultiesassociatedwith conven-

tionalbenchmarking approaches on highly parallelsystems are avoided.
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1 GENERAL REMARKS

D. Bailey, D. Browning," R. Carter, S. Fineberg," and H. Simon"

1.1 Introduction

The Numerical Aerodynamic Simulation (NAS) Program, which is based at

NASA Ames Research Center, is a large scale effort to advance the state of

computational aerodynamics. Specifically, the NAS organization aims "to

provide the Nation's aerospace research and development community by the

year 2000 a high-performance, operational computing system capable of sim-

ulating an entire aerospace vehicle system within a computing time of one to

several hours" (ref. 1, p. 3). The successful solution of this "grand challenge"

problem will require the development of computer systems that can perform

the required complex scientific computations at a sustained rate nearly one

thousand times greater than current generation supercomputers can now

achieve. The architecture of computer systems able to achieve this level of

performance will likely be dissimilar to the shared memory multiprocessing

supercomputers of today. While no consensus yet exists on what the design

will be, it is likely that the system will consist of at least 1000 processors

computing in parallel.

Highly parallel systems with computing power roughly equivalent to tra-

ditional shared memory multiprocessors exist today. Unfortunately, the per-

formance evaluation of these systems on comparable types of scientific com-

putations is very difficult for several reasons. Few relevant data are available

for the performance of algorithms of interest to the computational aerophysics

community on many currently available parallel systems. Benchmarking and

performance evaluation of such systems has not kept pace with advances in

hardware, software and algorithms. In particular, there is as yet no gener-

ally accepted benchmark program or even a benchmark strategy for these

systems.

The popular "kernel" benchmarks that have been used for traditional vec-

tor supercomputers, such as the Livermore Loops [2], the LINPACK bench-

mark [3, 4] and the original NAS Kernels [5], are clearly inappropriate for

*Computer Sciences Corporation, E1 Segundo, California. This work is supported

through NASA Contract NAS 2-12961.



the performance evaluation of highly parallel machines. First of all, the

tuning restrictions of these benchmarks rule out many widely used parallel

extensions. More importantly, the computation and memory requirements

of these programs do not do justice to the vastly increased capabilities of the

new parallel machines, particularly those systems that will be available by

the mid-1990s.

On the other hand, a full scale scientific application is similarly unsuitable.

First of all, porting a large program to a new parallel computer architecture

requires a major effort, and it is usually hard to justify a major research task

simply to obtain a benchmark number. For that reason we believe that the

otherwise very successful PERFECT Club benchmark [6] is not suitable for

highly parallel systems. This is demonstrated by very sparse performance

results for parallel machines in the recent reports [7, 8, 9].

Alternatively, an application benchmark could assume the availability of

automatic software tools for transforming "dusty deck" source into efficient

parallel code on a variety of systems. However, such tools do not exist today,

and many scientists doubt that they will ever exist across a wide range of

architectures.

Some other considerations for the development of a meaningful bench-

mark for a highly parallel supercomputer are the following:

• Advanced parallel systems frequently require new algorithmic and soft-

ware approaches, and these new methods are often quite different from

the conventional methods implemented in source code for a sequential

or vector machine.

• Benchmarks must be "generic" and should not favor any particular

parallel architecture. This requirement precludes the usage of any

architecture-specific code, such as message passing code.

• The correctness of results and performance figures must be easily veri-

fiable. This requirement implies that both input and output data sets

must be kept very small. It also implies that the nature of the compu-

tation and the expected results must be specified in great detail.

• The memory size and run time requirements must be easily adjustable

to accommodate new systems with increased power.

• The benchmark must be readily distributable.



In our view, the only benchmarking approach that satisfies all of these

constraints is a "paper and pencil" benchmark. The idea is to specify a set

of problems only algorithmically. Even the input data must be specified only

on paper. Naturally, the problem has to be specified in sufficient detail that

a unique solution exists, and the required output has to be brief yet detailed

enough to certify that the problem has been solved correctly. The person

or persons implementing the benchmarks on a given system are expected

to solve the various problems in the most appropriate way for the specific

system. The choice of data structures, algorithms, processor allocation and

memory usage are all (to the extent allowed by the specification) left open to

the discretion of the implementer. Some extension of Fortran or (3 is required,

and reasonable limits are placed on the usage of assembly code and the like,

but otherwise programmers are free to utilize language constructs that give

the best performance possible on the particular system being studied.

To this end, we have devised a number of relatively simple "kernels,"

which are specified completely in chapter 2 of this document. However,

kernels alone are insufficient to completely assess the performance potential

of a parallel machine on real scientific applications. The chief difficulty is that

a certain data structure may be very efficient on a certain system for one of

the isolated kernels, and yet this data structure would be inappropriate if

incorporated into a larger application. In other words, the performance of

a real computational fluid dynamics (CFD) application on a parallel system

is critically dependent on data motion between computational kernels. Thus

we consider the complete reproduction of this data movement to be of critical

importance in a benchmark.

Our benchmark set therefore consists of two major components: five par-

allel kernel benchmarks and three simulated application benchmarks. The

simulated application benchmarks combine several computations in a man-

ner that resembles the actual order of execution in certain important CFD

application codes. This is discussed in more detail in chapter 3.

We feel that this benchmark set successfully addresses many of the prob-

lems associated with benchmarking parallel machines. Although we do not

claim that this set is typical of all scientific computing, it is based on the key

components of several large aeroscience applications used on supercomput-

ers by scientists at NASA Ames Research Center. These benchmarks will be

used by the Numerical Aerodynamic Simulation (NAS) Program to evaluate

the performance of parallel computers.
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1.2 Benchmark Rules

1.2.1 Definitions

In the following, the term "processor" is defined as a hardware unit capable

of executing both floating point addition and floating point multiplication in-

structions. The "local memory" of a processor refers to randomly accessible

memory that can be accessed by that processor in less than one microsecond.

The term "main memory" refers to the combined local memory of all proces-

sors. This includes any memory shared by all processors that can be accessed

by each processor in less than one microsecond. The term "mass storage"

refers to non-volatile randomly accessible storage media that can be accessed

by at least one processor within forty milliseconds. A "processing node" is

defined as a hardware unit consisting of one or more processors plus their

local memory, which is logically a single unit on the network that connects

the processors.

The term "computational nodes" refers to those processing nodes pri-

marily devoted to high-speed floating point computation. The term "ser-

vice nodes" refers to those processing nodes primarily devoted to system

operations, including compilation, linking and communication with external

computers over a network.

1.2.2 General rules

Implementations of these benchmarks must be based on either Fortran-90

(which includes Fortran-77 as a subset) or C, although a wide variety of

parallel extensions are allowed. This requirement stems from the observation

that Fortran and C are the most commonly used programming languages by

the scientific parallel computing community at the present time. If in the

future, other languages gain wide acceptance in this community, they will

be considered for inclusion in this group. Assembly language and other low-

level languages and constructs may not be used, except that certain specific

vendor-supported assembly-coded library routines may be called (see section

1.2.3).

We are of the opinion that such language restrictions are necessary, be-

cause otherwise considerable effort would be made by benchmarkers in low-

level or assembly-level coding. Then the benchmark results would tend to

reflect the amount of programming resources available to the benchmarking
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organization, rather than the fundamental merits of the parallel system. Cer-

tainly the mainstream scientists that these parallel computers are intended

to serve will be coding applications at the source level, almost certainly in

Fortran or C, and thus these benchmarks are designed to measure the per-

formance that can be expected from such code.

Accordingly, the following rules must be observed in any implementations

of the NAS Parallel Benchmarks:

• All floating point operations must be performed using 64-bit floating

point arithmetic:

• All benchmarks must be coded in either Fortran-90 [10] or C [11], with

certain approved extensions.

• Implementation of the benchmarks may not include a mix of Fortran-90

and C code---one or the other must be used.

• Any extension of Fortran-90 that is in the High Performance Fortran

(HPF) draft dated January 1992 or later [12] is allowed.

• Any language extension or library routine that is employed in any of

the benchmarks must be supported by the vendor and available to all

users.

Subprograms and library routines not written in Fortran or C may only

perform certain functions, as indicated in the next section.

All rules apply equally to subroutine calls, language extensions and

compiler directives (i.e., special comments).

1.2.3 Allowable Fortran extensions and library routines

Fortran extensions and library routines are also permitted that perform the

following:

• Indicate sections of code that can be executed in parallel or loops that

can be distributed among different computational nodes.

• Specify the allocation and organization of data among or within com-

putational nodes.



Communicatedata betweenprocessingnodes.

Communicatedatabetweenthe computationalnodesandservicenodes.

Rearrangedata stored in multiple computational nodes,including con-
structs to perform indirect addressingand array transpositions.

Synchronizethe action of different computational nodes.

Initialize for a data communicationor synchronizationoperation that
will be performedor completedlater.

Perform high-speedinput or output operationsbetweenmain memory
and the massstoragesystem.

Perform any of the following array reduction operations on an array
either residingwithin asinglecomputationalnodeor distributed among
multiple nodes: +,x,l_X, MIN, AND, OR, X0R.

Combine communication between nodes with one of the operations

listed in the previous item.

Perform any of the following computational operations on arrays ei-

ther residing within a single computational node or distributed among

multiple nodes: dense or sparse matrix-matrix multiplication, dense or

sparse matrix-vector multiplication, one-dimensional, two-dimensional
or three-dimensional fast Fourier transforms, sorting, block tri-diagonal

system solution and block penta-diagonal system solution. Such rou-

tines must be callable with general array dimensions.

1.3 Sample Codes

The intent of this paper is to completely specify the computation to be car-

ried out. Theoretically, a complete implementation, including the generation

of the correct input data, could be produced from the information in this pa-

per. However, the developers of these benchmarks are aware of the difficulty

and time required to generate a correct implementation from scratch in this

manner. Furthermore, despite several reviews, ambiguities in this technical

paper may exist that could delay implementations.
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In order to reduce the number of difficulties and to aid the benchmarking

specialist, Fortran-77 computer programs implementing the benchmarks are

available. These codes are to be considered examples of how the problems

could be solved on a single processor system, rather than statements of how

they should be solved on an advanced parallel system. The sample codes

actually solve scaled down versions of the benchmarks that can be run on

many current generation workstations. Instructions are supplied in comments

in the source code on how to scale up the program parameters to the full size

benchmark specifications.

These programs, as well as the benchmark document itself, are available

from the Systems Development Branch in the NAS Systems Division. Mail

Stop 258-5, NASA Ames Research Center, Moffett Field, CA 94035-1000,

attn: NAS Parallel Benchmark Codes. The sample codes are provided on

Macintosh floppy disks and contain the Fortran source codes, "ReadMe" files,

input data files, and reference output data files for correct implementations

of the benchmark problems. These codes have been validated on a number

of computer systems ranging from conventional workstations to supercom-

puters.

Three classes of problems are defined in this document. These will be

denoted "Sample Code," "Class A," and "Class B," since the three classes

differ mainly in the sizes of principal arrays. Tables 1.1, 1.2, and 1.3 give

the problem sizes, memory requirements (measured in Mw), run times and

performance rates (measured in Mflop/s) for each of the eight benchmarks

and for the Sample Code, Class A, and Class B problem sets. These statis-

tics are based on implementations on one processor of a Cray Y-MP. The

operation count for the Integer Sort benchmark is based on integer oper-

ations rather than floating-point operations. The entries in the "Problem

Size" columns are sizes of key problem parameters. Complete descriptions

of these parameters are given in chapters 2 and 3.

1.4 Submission of Benchmark Results

It must be emphasized that the sample codes described in section 1.3 are not

the benchmark codes, but only implementation aids. For the actual bench-

marks, the sample codes must be scaled to larger problem sizes. The sizes

of the current benchmarks were chosen so that implementations are possi-

ble on currently available supercomputers. As parallel computer technology
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Benchmark code Problem Memory Time Rate

size (Mw) (sec)(Mflop/s)

Embarrassingly parallel (EP) 224 0.1 11.6 120

Multigrid (MG) 323 0.1 0.1 128

Conjugate gradient (CG) 1400 1.0 1.2 63

3-D FFT PDE (FT) 643 2.0 1.2 160

Integer sort (IS) 216 0.3 0.2 30.5

LU Solver (LU) 123 0.3 3.5 28

Pentadiagonal solver (SP) 123 0.2 7.2 24

Block tridiagonal solver (BT) 123 0.3 7.2 34

Table 1.1: NAS Parallel Benchmarks Sample Code Statistics

progresses, future releases of these benchmarks will specify larger problem

sizes.

The authors and developers ofthese benchmarks encourage submission of

performance resultsfor the problems listedin table 1.2.Periodicpublication

of the submitted results is planned. Benchmark results should be submitted

to the Applied Research Branch, NAS Systems Division, Mail Stop T045-1,

NASA Ames Research Center, Moffett Field, CA 94035, attn: NAS Parallel

Benchmark Results. A complete submission of results should include the

following:

• A detailed description of the hardware and software configuration used

for the benchmark runs.

• A description of the implementation and algorithmic techniques used.

• Source listings of the benchmark codes.

• Output listings from the benchmarks.
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Benchmarkcode Problem Memory Time Rate

size (Mw) (sec) (Mflop/s)

Embarrassingty parallel (EP) 22s

Multigrid (MG) 2563

Conjugate gradient (CG) 14000

3-D FFT PDE (FT) 2562 × 128

Integer sort (IS) 223

LU solver (LU) 643

Pentadiagonal solver (SP) 643

Block tridiagonal solver (BT) 643

1 151 147

57 54 154

10 22 70

59 39 192

26 21 37.2

30 344 189

6 806 175

24 923 192

Table 1.2: NAS Parallel Benchmarks Class A Statistics

Benchmark code Problem Memory Time Rate

size (Mw) (sec) (Mflop/s)

Embarrassingly parallel (EP) 230 18 512

Multigrid (MG) 2563 59 114

Conjugate gradient (CG) 75000 97 998

3-D FFT PDE (FT) 512x256 × 256 162 366

Integer sort (IS) 225 114 126

LU solver (LU) 1023 122 1973

Pentadiagonal solver (SP) 1023 22 2160

Block tridiagonal solver (BT) 1023 96 3554

197

165

55

195

25

162

207

203

Table 1.3: NAS Parallel Benchmarks Class B Statistics
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2 THE KERNEL BENCHMARKS

D. Bailey, E. Barszcz, L. Dagum,* P. Frederickson, t R. Schreiber, t
and H. Simon*

2.1 Overview

After an evaluation of a number of large scale CFD and computational aero-

sciences applications on the NAS supercomputers at NASA Ames, a number

of kernels were selected for the benchmark. These were supplemented by

some other kernels which are intended to test specific features of parallel

machines. The following benchmark set was then assembled:

EP: An "embarrassingly parallel" kernel. It provides an estimate of the

upper achievable limits for floating point performance, i.e., the perfor-

mance without significant interprocessor communication.

MG: A simplified multigrid kernel. It requires highly structured long dis-
tance communication and tests both short and long distance data com-

munication.

CG: A conjugate gradient method is used to compute an approximation to

the smallest eigenvalue of a large, sparse, symmetric positive definite

matrix. This kernel is typical of unstructured grid computations in that

it tests irregular long distance communication, employing unstructured

matrix vector multiplication.

FT: A 3-D partial differential equation solution using FFTs. This kernel

performs the essence of many "spectral" codes. It is a rigorous test of

long-distance communication performance.

IS: A large integer sort. This kernel performs a sorting operation that is

important in "particle method" codes. It tests both integer computa-

tion speed and communication performance.

*Computer Sciences Corporation. This work is supported through NASA Contract
NAS 2-12961.

tResearch Institute for Advanced Computer Science (RIACS), Ames Research Center.
This work is supported by NAS Systems Division through Cooperative Agreement Number
NCC 2-387.
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These kernels involve substantially larger computations than previous ker-

nel benchmarks, such as the Livermore Loops or Linpack, and therefore they

are more appropriate for the evaluation of parallel machines. The Parallel

Kernels in particular are sufficiently simple that they can be implemented

on a new system without unreasonable effort and delay. Most importantly,

as emphasized earlier, this set of benchmarks incorporates a new concept in

performance evaluation, namely that only the computational task is speci-

fied, and that the actual implementation of the kernel can be tailored to the

specific architecture of the parallel machine.

In this chapter the Parallel Kernel benchmarks are presented, and the

particular rules for allowable changes are discussed. Future reports will de-

scribe implementations and benchmarking results on a number of parallel

supercomputers.

2.2 Description of the Kernels

2.2.1 Kernel EP: An embarrassingly parallel benchmark

D. Bailey and P. Frederickson

Brief Statement of Problem

Generate pairs of Gaussian random deviates according to a specific scheme

described below and tabulate the number of pairs in successive square annuli.

Detailed Description

Set n = 22s, a = 513 and s = 271,828, 183. Generate the pseudorandom

floating point values rj in the interval (0, 1) for 1 < j < 2n using the

scheme described in section 2.3. Then for 1 < j < n set xj = 2r2j-1 - 1

and yj = 2r2j - 1. Thus xj and yj are uniformly distributed on the interval

(-1, 1).
2 2<1"Next set k = 0. Then beginning with j = 1, test to see if tj = xj + yj _

If not, reject this pair and proceed to the next j. If this inequality holds, then

set k _-- k + 1, Xk = xj_/(-21ogtj)/tj and Yk = yj_(-2logtj)/tj, where log
denotes the natural logarithm. Then Xk and Yk are independent Gaussian

deviates with mean zero and variance one. Approximately n_r/4 pairs will

be constructed in this manner. See reference 2, page 117 for additional dis-

cussion of this scheme for generating Gaussian deviates. The computation

of Gaussian deviates must employ the above formula, and vendor-supplied

14



1

0 98257395

1 93827014

2 17611549

3 1110028

4 26536

5 245

6 0

7 0

8 0

9 0

Table

Class A Class B

Ql Qt
393058470

375280898

70460742

4438852

105691

948

5

0

0

0

2.1: EP Benchmark Counts

intrinsic routines must be employed for performing all square root and loga-

rithm evaluations.

Finally, for 0 < l < 9 tabulate Ql as the count of the pairs (Xk, Yk) that

lie in the square annulus l < max(]Xkh ]Yk]) < l + 1, and output the ten Qz

counts. The two sums _k Xk and _k Yk must also be output.

This completes the definition of the Class A problem. The Class B prob-

lem is the same except that n = 23°.

Verification Test

The two sums _k Xk and _]k Yk must agree with reference values to

within one part in 1012. For the Class A problemm, the reference values are

-4.295875165629892 x 103 and -1.580732573678431 x 104 , while for the Class

B problem the sums are 4.033815542441498 x 104 and -2.660669192809235 x

104. Each of the ten Qt counts must agree exactly with reference values, which

are given in table 2.1.

Operations to be Timed

All of the operations described above are to be timed, including tabulation

and output.
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Other Features

• This problem is typical of many Monte Carlo simulation applications.

• The only requirementfor communicationis the combinationof the 10
sumsfrom variousprocessorsat the end.

• Separatesectionsof the uniform pseudorandomnumberscan be inde-
pendently computedonseparateprocessors.Seesection2.3for details.

The smallestdistancebetweena floating-point valueand a nearby in-
teger among the rj, Zk and Yk values is 3.2 x 10 -11, which is well

above the achievable accuracy using 64 bit floating arithmetic on ex-

isting computer systems. Thus if a truncation discrepancy occurs, it

implies a problem with the system hardware or software.

2.2.2 Kernel MG: a simple 3D multigrid benchmark

E. Barszcz and P. _'k-ederickson

Brief Statement of Problem

Four iterations of the V-cycle multigrid algorithm described below are

used to obtain an approximate solution u to the discrete Poisson problem

on a 256 x 256 x 256 grid with periodic boundary conditions.

Detailed Description

Set v = 0 except at the twenty points listed in table 2.2. where v = :kl.

(These points were determined as the locations of the ten largest and ten

smallest pseudorandom numbers generated as in Kernel FT.)

Begin the iterative solution with u = 0. Each of the four iterations

consists of the following two steps, in which k = 8 = log2(256):

r=v-Au (evaluate residual)

u = u + Mkr (apply correction)

Here M k denotes the V-cycle multigrid operator, defined in table 2.3.

16



v ,j,k (i,j,k)
-i.0 211,154, 98 102,138,112 101,156, 59 17,205,32 92, 63,205

199, 7,203 250,170,157 82,184,255 154,162, 36 223, 42,240

-{-1.0 57,120,167 5,118,175 176,246,164 45,194,234 212, 7,248

115,123,207 202, 83,209 203, 18,198 243,172, 14 54,209,40

Table 2.2: Nonzero values for v

zk = Mkrk :

if k> 1

else

rk-t = P rk

Zk-t = Mk-trk-1

Zk "- Q Zk-1

rk = rk - A zk

Zk = zk + oq rk

Z 1 _ S rl.

(restrict residual)

(recursive solve)

(prolongate)

(evaliaate residual)

(apply smoother)

(apply smoother)

Table 2.3: V-cycle multigrid operator

In this definition A denotes the trilinear finite element discretizatlon of

the Laplacian V 2 normalized as indicated in table 2.4, where the coefficients

of P, Q, and S are also listed.

In this table Co denotes the central coefficient of the 27-point operator, when

these coefficients are arranged as a 3 x 3 x 3 cube. Thus Co is the coefficient

that multiplies the value at the gridpoint (i,j,k), while cx multiplies the six

values at grid points which differ by one in exactly one index, c2 multiplies

the next closest twelve values, those that differ by one in exactly two indices,

and c3 multiplies the eight values located at grid points that differ by one

in all three indices. The restriction operator P given in this table is the

trilinear projection operator of finite element theory, normalized so that the

coefficients of all operators are independent of level, and is half the transpose

of the trilinear interpolation operator Q.
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C co Cl c2 c3

A -8.0/3.0 0.0 1.0/6.0 1.0/12.0

P 1.0/2.0 1.0/4.0 1.0/8.0 1.0/16.0

Q 1.0 1.0/2.0 1.0/4.0 1.0/8.0

S(a) -3.0/8.0 +1.0/32.0 -1.0/64.0 0.0

S(b) -3.0/17.0 +1.0/33.0 -1.0/61.0 0.0

Table 2.4: Coefficients for trilinear finite element discretization

Verification Test

Class A: Evaluate the residual after four iterations of the V-cycle multi-

grid algorithm using the coefficients from the S(a) row for the smoothing

operator S, and verify that its L2 norm

II,'11 - [ ( )/256 11/ 
i,j,k

agrees with the reference value

0.2433365309 x 10 -°s

within an absolute tolerance of 10 -14 .

Class B: The array size is the same as for Class A (256), but 20 iterations

must be performed using the coefficients from the S(b) row for the smoothing

operator S. The output L2 norms must agree with the reference value

0.180056440132 x 10 -°s

within an absolute tolerance of 10 -14 .

Timing

Start the clock before evaluating the residual for the first time, and after

initializing u and v. Stop the clock after evaluating the norm of the final

residual, but before displaying or printing its value.
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2.2.3 Kernel CG: Solving an unstructured sparse linear system

by the conjugate gradient method

R. Schreiber, H. Simon, and R. Carter

Brief Statement of Problem

This benchmark uses the inverse power method to find an estimate of

the largest eigenvalue of a symmetric positive definite sparse matrix with a

random pattern of nonzeros.

Detailed Description

In the following, A denotes the sparse matrix of order n, lower case Roman

letters are vectors, xj is the jth component of the vector x, and superscript

"T" indicates the usual transpose operator. Lower case Greek letters are

scalars. We denote by IIxl[ the Euclidean norm of a vector x, lixll = v/_-_.

All quantities are real. The inverse power method is to be implemented as

follows:

x = [1, 1,..., lIT;

(start timing here)

DO it = 1, niter

Solve the system Az = x and return lirll, as described below

¢ = + ]l(xrz)
Print it, lit[I, and

x=z/llzll
ENDDO

(stop timing here)

Values for the size of the system n, number of outer iterations niter, and

the shift _ for three different problem sizes are provided in table 2.5. The

solution z to the linear system of equations Az = x is to be approximated us-

ing the conjugate gradient (CG) method. This method is to be implemented

as follows:

z=0
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r:x

p : rTr

p--r

DO i = 1, 25

q-- Ap

a = p/(pTq)

z=z+ap

po= p

r=r--_q

p -- rTr

= p/po
p=r+_p

ENDDO

compute residual norm explicitly: ]]r[] = I[x - Az]]

Size n niter NONZER

Sample 1400 15 7 10

Class A 14000 15 11 20

Class B 75000 75 13 60

Table 2.5: Input parameters for CG benchmark

Verification Test

The program should print, at every outer iteration of the power method,

the iteration number it, the eigenvalue estimate _, and the Euclidean norm

Ilrll of the residual vector at the last CG iteration (the vector r in the dis-

cussion of CG above). For each size problem the computer value of _" must

agree with the reference value _REF within a tolerance of 1.0 x 10 -1°, i.e.,

I_ -- _REFI <--- 1.0 X 10 -10. These reference values _REF are provided in table

2.6.

Timing

The reported time must be the wall-clock time required to compute all

niter iterations and print the results, after the matrix is generated and down-

loaded into the system, and after the initialization of the starting vector x.
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Size
Computed FLOP mem

nonzeros X10 9 (MW) _REF

Sample

Class A

Class B

78148 0.066 1.0

1853104 1.50 10.0

13708072 54.9 96.7

8.59717750786234

17.13023505380784

22.712745482078

Table 2.6: Output parameters for CG benchmark

It is permissible initially to reorganize the sparse matrix data structure

(arow, acol, aeIt), which is produced by the matrix generation routine (de-

scribed below), to a data structure better suited for the target machine.

The original or the reorganized sparse matrix data structure can then be

subsequently used in the conjugate gradient interation. Time spent in the

initial reorganization of the data structure will not be counted towards the

benchmark time.

It is also permissible to use several different data structures for the matrix

A, keep multiple copies of the matrix A, or to write A to mass storage and

read it back in. However, the time for any data movements, which take place

within the power iterations (outer iteration) or within the conjugate gradient

iterations (inner iteration), must be included in the reported time.

However, the matrix A must be used explicitly. By saving the random

sparse vectors x used in makea (see below), it is possible to reformulate the

sparse matrix-vector multiply operation in such a way that communication

is substantially reduced (to only a few dense vectors), and sparse operations

are restricted to the processing nodes. Although this scheme of matrix-vector

multiplication technically satisfied the original rules of the CG benchmark, it

defeats this benchmark's intended purpose of measuring random communi-

cation performance. Therefore this scheme is no longer allowed, and results

employing implicit matrix-vector multiplication based on the outer prod-

uct representation of the sparse matrix are no longer considered to be valid

benchmark results.

Other Features

The input sparse matrix A is generated by a Fortran 77 subroutine called

makea, which is provided on the sample code disk described in section 1.3.
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In this program, the random number generator is initialized with a = 513

and s = 314159265. Then the subroutine makea is called to generate the

matrix A. This program may not be changed. In the makea subroutine the

matrix A is represented by the following Fortran 77 variables:

N (IlqrEGF_)--the number of rows and columns

NZ (IlqrEGF._)--the number of nonzeros

A (REAL*8)--array of NZ nonzeros

IA (IlqrEGF__)--array of NZ row indices. Element A(K) is in row IA(K) for

all 1< K < NZ.

JA (IlqrEGF__)--array of N+I pointers to the beginnings of columns. Column

J of the matrix is stored in positions JA(J) through JA(J+I)-I of A and IA.

JA(N+I) contains NZ+I.

The code generates the matrix as the weighted sum of N outer products

of random sparse vectors x:

N

A = __,_izz T
i=1

where the weights w_ are a geometric sequence with wl = 1 and the ratio

chosen so that wN = 0.1. The vectors x are Chosen to have a few randomly

placed nonzeros, each of which is a sample from the uniform distribution

on (0, 1). Furthermore, the i th element of xi is set to 1/2 to insure that

A cannot be structurally singular. Finally, 0.1 is added to the diagonal

of A. This results in a matrix whose condition number (the ratio of its

largest eigenvalue to its smallest) is roughly 10. The number of randomly

chosen elements of x is provided for each problem size in table 2.5, in the

"NONZER" column. The final number of nonzeros of A are listed in table 2.6

in the "computed nonzeros" column. As implemented in the sample codes,

the shift $ of the main diagonal of A is the final task in subroutine makea.

Values are provided for )t in table 2.5.

The data structures used are these. First, a list of triples (arow, acol, aelt)

is constructed. Each of these represents an element in row i = arow, column

j = acol, with value aij = aelt. When the arow and acol entries of two of

these triples coincide, then the values in their aelt fields are added together in

creating aij. The process of assembling the matrix data structures from the

list of triples, including the process of adding coincident entries, is done by

the subroutine sparse, which is called by makea and is also provided. For
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examplesand more details on this sparsedata structure, consult section2.7
of the book by Duff, Erisman, and Reid [3].

2.2.4 Kernel FT: A 3-D fast-Fourier transform partial differential

equation benchmark

D. Bailey and P. Frederickson

Brief Statement of Problem

Numerically solve a certain partial differential equation (PDE) using for-

ward and inverse FFTs.

Detailed Description

Consider the PDE

0 (x,t) - av%(x,t)
0t

where x is a position in three-dimensional space. When a Fourier transform

is applied to each side, this equation becomes

= -4  21zl2v(z,t)
0t

where v(z, t) is the Fourier transform of u(x, t). This has the solution

v(z,t) = e-4  2izl%(z,0)

Now consider the discrete version of the original PDE. Following the

above steps, it can be solved by computing the forward 3-D discrete Fourier

transform (DFT) of the original state array u(x, 0), multiplying the results by

certain exponentials, and then performing an inverse 3-D DFT. The forward

DFT and inverse DFT of the nl x n2 x n3 array u are defined respectively as

n3--1 n2--1 nl --I

Fq,,.,,(u) = __, _ _ ui,k,,e-2"iJql'_'e-2'_ik"/"2e -2"'u/'3
1--0 k=0 j--0

n3-1 n2 -1 n1-1 e 2rikr /n2 e 2¢ril$/n3
F(,,_,o(u) = 1 _., _ __, uj,k,,j,_,iql,,

TtlT$2T_3 1=0 k=O j=O

The specific problem to be solved for the Class A benchmark is as follows.

Set nl = 256, n2 -" 256, and n3 = 128. Generate 2nln2n3 64-bit pseudo-

random floating point values using the pseudorandom number generator in
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section 2.3, starting with the initial seed 314159265. Then fill the complex

array Uj,k,z, 0 < j < nl, 0 < k < n_, 0 < l < n3, with this data, where the

first dimension varies most rapidly as in the ordering of a 3-D Fortran array.

A single complex number entry of U consists of two consecutive pseudoran-

domly generated results. Compute the forward 3-D DFT of U, using a 3-D

fast Fourier transform (FFT) routine, and call the result V. Set c_ = 10 -6

and set t = 1. Then compute

_4_2(32 +_2+/_)t u., ,
Wj,k,l _ ,.. ,3,1¢,_

where 3 is defined as j for 0 < j < nl/2 and j - nl for nl/2 <_ j < nl.

The indices k and I are similarly defined with n2 and n3. Then compute an

inverse 3-D DFT on W, using a 3-D FFT routine, and call the result the
X"1023 y

array X. Finally, compute the complex checksum _j=0 --q,_,s where q = j

(mod nl), r=3j (mod n2) and s=5j (mod n3). hfter the checksum for

this t has been output, increment t by one. Then repeat the above process,

from the computation of W through the incrementing of t, until the step

t = N has been completed. In this benchmark, N = 6. The V array and the

array of exponential terms for t = 1 need only be computed once. Note that

the array of exponential terms for t > 1 can be obtained as the t-th power of

the array for t = 1.

This completes the definition of the Class A problem. The Class B prob-

lem is the same except that nl = 512, n2 = 256, n3 = 256, and N = 20.

Any algorithm may be used for the computation of the 3-D FFTs men-

tioned above. One algorithm is the following. Assume that the data in the

input nl x n2 × n3 complex array A are organized so that for each k and l,

all elements of the complex vector (Aj,k,l, 0 <_ j < nl) are contained within a

single processing node. First perform an hi-point 1-D FFT on each of these

n2n3 complex vectors. Then transpose the resulting array into an n2 × n3 × nl

complex array B. Next, perform an n2-point 1-D FFT on each of the n3nl

first-dimension complex vectors of B. Again note that each of the 1-D FFTs

can be performed locally within a single node. Then transpose the resulting

array into an n3 X nl × n2 complex array C. Finally, perform an n3-point

1-D FFT on each of the nln2 first-dimension complex vectors of C. Then

transpose the resulting array into an nl x n2 x n3 complex array D. This

array D is the final 3-D FFT result.

Algorithms for performing an individual 1-D complex-to-complex FFT

are well known and will not be presented here. Readers are referred to [4, 5, 6,
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7, 8]for details. It shouldbenoted that someof theseFFTs are "unordered"
FFTs, i.e., the resultsarenot in the correctorder but insteadare scrambled
by a bit-reversal permutation. SuchFFTs may be employedif desired,but
it shouldbe noted that in this casethe orderingof the exponentialfactors in
the definition of Wj,k,l above must be similarly scrambled in order to obtain

the correct results. Also, the final result array X may be scrambled, in which

case the checksum calculation will have to be changed accordingly.

It should be noted that individual 1-D FFTs, array transpositions, and

even entire 3-D FFT operations may be performed using vendor-supplied

library routines. See sections 1.2.2 and 1.2.3 for details.

Operations to be Timed

All of the above operations, including the checksum calculations, must

be timed.

Verification Test

The N complex checksums must agree with reference values to within one

part in 1012 . For the parameter sizes specified above, the reference values are

given in table 2.7.

Other Features

• 3-D FFTs are a key part of certain CFD applications, notably large

eddy turbulence simulations.

• The 3-D FFT steps require considerable communication for operations

such as array transpositions.

2.2.5 Kernel IS: Parallel sort over small integers

L. Dagum

Brief Statement of Problem

Sort N keys in parallel. The keys are generated by the sequential key

generation algorithm given below and initially must be uniformly distributed

in memory. The initial distribution of the keys can have a great impact on

the performance of this benchmark, and the required distribution is discussed

in detail below.
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t Real Part

1 504.6735008193

2 505.9412319734

3 506.9376896287

4 507.7892868474

5 508.5233095391

6 509.1487099959

Class A

I Imaginary Part t Real Part511.4047905510 1 517.7643571579

509.8809666433 2 515.4521291263

509.8144042213 3 514.6409228649

510.1336130759 4 514.2378756213

510.4914655194 5 513.9626667737

510.7917842803 6 513.7423460082

7 513.5547056878

8 513.3910925466

9 513.2470705390

10 513.1197729984

11 513.0070319283

12 512.9070537032

13 512.8182883502

14 512.7393733383

15 512.6691062020

16 512.6064276004

17 512.5504076570

18 512.5002331720

19 512.4551951846

20 512.4146770029

Class B

Imaginary Part

507.7803458597

508.8249431599

509.6208912659

510.1023387619

510.3976610617

510.5948019802

510.7404165783

510.8576573661

510.9577278523

511.0460304483

511.1252433800

511.1968077718

511.2616233064

511.3203605551

511.3735928093

511.4218460548

511.4656139760

511.5053595966

511.5415130407

511.5744692211

Table 2.7: FT Benchmark Checksums
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Definitions

A sequence of keys, {K_ [ i = 0,1,...,N-I}, will be said to be

sorted if it is arranged in non-descending order, i.e., Ki _< K_+I _< K_+2 ....

The rank of a particular key in a sequence is the index value• i that the

key would have if the sequence of keys were sorted. Ranking, then, is the

process of arriving at a rank for all the keys in a sequence. Sorting is

the process of permuting the the keys in a sequence to produce a sorted

sequence. If an initially unsorted sequence, K0, K1,...,KN-1 has ranks

r(0), r(1),..., r(N- 1), the sequence becomes sorted when it is rearranged in

the order Kr(o), Kro),..., K_(N-1). Sorting is said to be stable if equal keys

retain their original relative order. In other words, a sort is stable only if

r(i) < r(j) whenever K,(i) = Kr(j) and i < j. Stable sorting is not required
for this benchmark.

Memory Mapping

The benchmark requires ranking an unsorted sequence of N keys. The

initial sequence of keys will be generated in an unambiguous sequential man-

ner as described below. This sequence must be mapped into the memory

•of the parallel processor in one of the following ways depending on the type

of memory system. In all cases, one key will map to one word of memory.

Word size must be no less than 32 bits. Once the keys are loaded onto the

memory system, they are not to be moved or modified except as required by

the procedure described in the Procedure subsection.

Shared Global Memory

All N keys initially must be stored in a contiguous address space. If A_ is

used to denote the address of the i *h word of memory, then the address space

must be [A_, Ai+N-1]. The sequence of keys, Ko, 1(1,..., KN-1, initially must

map to this address space as

A,+j _--- MEM(Kj) for j-O, 1,...,N-1 (2.1)

where MEM(Kj) refers to the address of Kj.

Distributed Memory

In a distributed memory system with p distinct memory units, each mem-

ory unit initially must store Np keys in a contiguous address space, where

Np = N/p (2.2)
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If Ai is used to denote the address of the i :h word in a memory unit, and

if Pj is used to denote the jtn memory unit, then Pj fl Ai will denote the

address of the i :h word in the jth memory unit. Some initial addressing (or

"ordering") of memory units must be assumed and adhered to throughout the

benchmark. Note that the addressing of the memory units is left completely

arbitrary. If N is not evenly divisible by p, then memory units {Pj [ j =

0, 1,..., p- 2} will store Np keys, and memory unit Pp-1 will store Npp keys,

where now

gp = LN/p+ 0.SJ
Npp = N-(p-1)Np

In some cases (in particular if p is large) this mapping may result in a

poor initial load balance with Npp >> Np. In such cases it may be desirable

to use p' memory units to store the keys, where p' < p. This is allowed, but

the storage of the keys still must follow either equation 2.2 or equations 2.3-

2.3 with p' replacing p. In the following we will assume N is evenly divisible

by p. The address space in an individual memory unit must be [Ai, A_+gp-1].

If memory units are individually hierarchical, then Np keys must be stored

in a contiguous address space belonging to a single memory hierarchy and

A_ then denotes the address of the i th word in that hierarchy. The keys

cannot be distributed among different memory hierarchies until after timing

begins. The sequence of keys, K0, K1,..., KN-1, initially must map to this

distributed memory as

Pk f3 A_+j _ MEM(KkNp+j) for

and

j = O,1,...,Np-1
k=O, 1,...,p-1

where MEM(KkNp+j) refers to the address of KkNp+j. If N is not evenly

divisible by p, then the mapping given above must be modified for the case

where k = p- 1 as

Pp__ V1Ai+j _-- MEM(K(p-1)Np+j) for j = 0, 1,...,Npn - 1. (2.3)

Hierarchical Memory

All N keys initially must be stored in an address space belonging to a

single memory hierarchy which will here be referred to as the main memory.

Note that any memory in the hierarchy which can store all N keys may
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be usedfor the initial storageof the keys, and the useof the term "main
memory" in the description of this benchmarkshould not be confusedwith
the more generaldefinition of this term in section 1.2.1. The keys cannot
be distributed amongdifferentmemoryhierarchiesuntil after timing begins.
The mapping of the keysto the main memory must follow oneof either the
sharedglobal memoryor the distributed memorymappingsdescribedabove.

The benchmarkrequirescomputing the rank of eachkeyin the sequence.
The mappings describedabovedefinethe initial ordering of the keys. For
sharedglobal and hierarchicalmemorysystems,the samemapping must be
appliedto determinethe correct ranking. For the caseof a distributed mem-
ory system,it is permissiblefor the mappingof keysto memoryat the endof
the ranking to differ from the initial mapping only in the following manner:

the number of keys mapped to a memory unit at the end of the ranking may

differ from the initial value, Np. It is expected, in a distributed memory

machine, that good load balancing of the problem will require changing the

initial mapping of the keys and for this reason a different mapping may be

used at the end of the ranking. If Npk is the number of keys in memory

unit Pk at the end of the ranking, then the mapping which must be used to

determine the correct ranking is given by

Pk _ A,+j _-- MEM(r(kNpk + j)) for

and

j = 0,1,...,Npk - 1

k = 0,1,...,p-1

where r(kNpk +j) refers to the rank of key Kkgpk+j. Note, however, this does

not imply that the keys, once loaded into memory, may be moved. Copies of

the keys may be made and moved, but the original sequence must remain in-

tact such that each time the ranking process is repeated (Step 4 of Procedure)

the original sequence of keys exists (except for the two modifications of Step

4a) and the same algorithm for ranking is applied. Specifically, knowledge

obtainable from the communications pattern carried out in the first ranking

cannot be used to speed up subsequent rankings and each iteration of Step

4 should be completely independent of the previous iteration.

Key Generation Algorithm

The algorithm for generating the keys makes use of the pseudorandom

number generator described in section 2.3. The keys will be in the range
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Rank (full) Full scale Rank (sample) Samplecode
r(2112377) 104 + i r(48427) 0 + i

r(662041) 17523 + i r(17148) 18 + i

r(5336171) 123928 ÷ i r(23627) 346 -{-i

r(3642833) 8288932 -i r(62548) 64917 - i

r(4250760) 8388264 - i r(4431) 65463 - i

Table 2.8: Values to be used for partial verification

[0, Bma,). Let r I be a random fraction uniformly distributed in the range

[0, 1], and let Ki be the i *h key. The value of Ki is determined as

Ki _ [B,,,a,(r4i+o+r4i+l+rai+2+r4i+3)/4J for i = 0, 1,...,N-1.(2.4)

Note that K_ must be an integer and [.J indicates truncation. Four consecu-

tive pseudorandom numbers from the pseudorandom number generator must

be used for generating each key. All operations before the truncation must be

performed in 64-bit double precision. The random number generator must

be initialized with s = 314159265 as a starting seed.

Partial Verification Test

Partial verification is conducted for each ranking performed. Partial ver-

ification consists of comparing a particular subset of ranks with the reference

values. The subset of ranks and the reference values are given in table 2.8.

Note that the subset of ranks is selected to be invariant to the ranking

algorithm (recall that stability is not required in the benchmark). This is

accomplished by selecting for verification only the ranks of unique keys. If

a key is unique in the sequence (i.e., there is no other equal key), then it

will have a unique rank despite an unstable ranking algorithm. The memory

mapping described in the Memory Mapping subsection must be applied.

Full Verification Test

Full verification is conducted after the last ranking is performed. Full

verification requires the following:

1. Rearrange the sequence of keys, {K_ I i = 0, 1,...,N - 1}, in the
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order{Kj I J=r(0),r(1),'",r(N-1)},wherer(0)'r(1)"'"r(N-

1) is the last computed sequence of ranks.

2. For every Ki from i = 0... N - 2 test that Ki _ Ki+l.

If the result of this test is true, then the keys are in sorted order. The memory

mapping described in the Memory Mapping subsection must be applied.

Procedure

1. In a scalar sequential manner and using the key generation algorithm

described above, generate the sequence of N keys.

2. Using the appropriate memory mapping described above, load the N

keys into the memory system.

3. Begin timing.

4. Do, for i = 1 to I,,_

(a) Modify the sequence of keys by making the following two changes:

K_---i

Ki+l=:: _ (B,,,:: - i)

(b) Compute the rank of each key.

(c) Perform the partial verification test described above.

5. End timing.

6. Perform full verification test described above.

Specifications

The specifications given in table 2.9 shall be used in the benchmark. Two

sets of values are given, one for Class A and one for Class B.

For partial verification, the reference values given in table 2.8 are to be

used. In this table, r(j) refers to the rank of Kj and i is the iteration

of Step 4 of the Procedure. Again two sets of values are given, the Full

Scale set being for the actual benchmark and the Sample Code set being

for development purposes. It should be emphasized that the benchmark
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Parameter ClassA ClassB
N 223 225

B,_,_ 219 221

seed 314159265 314159265

I_._ I0 I0

Table 2.9: Parameter values to be used for benchmark

measures the performance based on use of the Full Scale values, and the

Sample Code values are given only as a convenience to the implementor.

Also to be supplied to the implementor is Fortran 77 source code for the

sequential implementation of the benchmark using the Sample Code values

and with partial and full verification tests.

2.3 A Pseudorandom Number Generator for the Par-

allel NAS Kernels

D. Bailey

Suppose that n uniform pseudorandom numbers are to be generated. Set

a = 513 and let x0 = s be a specified initial "seed," i.e., an integer in the

range 0 < s < 246. Generate the integers xk for 1 < k < n using the linear

congruential recursion

Xk+ 1 _- axk (rood 246)

and return rl, = 2-46xk as the results. Thus 0 < rk < 1, and the rk are

very nearly uniformly distributed on the unit interval. See [2], beginning on

page 9 for further discussion of this type of pseudorandom number generator.

Note that any particular value xk of the sequence can be computed di-

rectly from the initial seed s by using the binary algorithm for exponentiation,

taking remainders modulo 246 after each multiplication. To be specific, let m

be the smallest integer such that 2" > k, set b = s and t = a. Then repeat

the following for i from 1 to m:

j _-- k/2
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b _ bt (rood246 ) if 2j:_k

t _ t 2 (rood246 )

k*--j

The final value of b is xk = aks (rood 246). See [2] for further discussion of

the binary algorithm for exponentiation.

The operation of multiplying two large integers modulo 24s can be imple-

mented using 64 bit floating point arithmetic by splitting the arguments into

two words with 23 bits each. To be specific, suppose one wishes to compute

c = ab (mod 246). Then perform the following steps, where int denotes the

greatest integer:

al _ int (2-23a)

a2 *- a--223al

bl 4--- int (2-23b)

b2 _ b-223bl

tl *-- alb2 + a2bl

t2 _-- int (2-23tl)

t 3 +-- t I -- 223t2

t4 *-- 223t3 q- a2b2

t5 *'- int (2-46t4)

c *--- t4-246t5

An implementation of the complete pseudorandom number generator al-

gorithm using this scheme produces the same sequence of results on any

system that satisfies the following requirements:

• The input multiplier a and the initial seed s, as well as the constants

223, 2 -23, 246 and 2 -46, can be represented exactly as 64 bit floating

point constants.

• The truncation of a nonnegative 64 bit floating point value less than

224 is exact.

• The addition, subtraction and multiplication of 64 bit floating point

values, where the arguments and results are nonnegative whole numbers

less than 247 , produce exact results.
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• The multiplication of a 64bit floating point value, which is a nonneg-
ative whole number less than 247,by the 64 bit floating point value
2-'_, 0 < m < 46, producesan exact result.

Theserequirementsaremet by virtually all scientificcomputersin usetoday.
Any systembasedon the IEEE-754 floating point arithmetic standard [1]
easilymeetstheserequirementsusing double precision. However,it should
be noted that obtaining an exact power of two constant on somesystems
requiresa loop rather than merely an assignmentstatementwith **.

Other Features

• The period of this pseud0random number generator is 244 = 1.76 x 1013,

and it passes all reasonable statistical tests.

• This calculation can be vectorized on vector computers by generating

results in batches of size equal to the hardware vector length.

By using the scheme described above for computing xk directly, the

starting seed of a particular segment of the sequence can be quickly

and independently determined. Thus numerous separate segments can

be generated on separate processors of a multiprocessor system.

Once the IEEE-754 floating point arithmetic standard gains universal

acceptance among scientific computers, the radix 246 can be safely in-

creased to 252 , although the scheme described above for multiplying

two such numbers must be correspondingly changed. This will increase

the period of the pseudorandom sequence by a factor of 64 to approxi-

mately 1.13 x 1015.
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3 A METHODOLOGY FOR BENCHMARK-

ING SOME CFD KERNELS ON HIGHLY

PARALLEL PROCESSORS

Sisira Weeratunga,* Eric Barszcz, Rod Fatoohi,* and V. Venkatakrishnan*

Summary

A collection of iterative PDE solvers embedded in a pseudo application pro-

gram is proposed for the performance evaluation of CFD codes on highly

parallel processors. The pseudo application program is stripped of com-

plexities associated with real CFD application programs, thereby enabling a

simpler description of the algorithms. However, it is capable of reproducing

the essential computation and data motion characteristics of large scale, state

of the art CFD codes. In this chapter, we present a detailed description of

the pseudo application program concept. Preceding chapters address our ba-

sic approach towards the performance evaluation of parallel supercomputers

targeted for use in numerical aerodynamic simulation.

3.1 Introduction

Computational Fluid Dynamics (CFD) is one of the fields in the area of

scientific computing that has driven the development of modern vector su-

percomputers. Availability of these high performance computers has led to

impressive advances in the state of the art of CFD, both in terms of the

physical complexity of the simulated problems and the development of com-

putational algorithms capable of extracting high levels of sustained perfor-

mance. However, to carry out the computational simulations essential for

future aerospace research, CFD must be able and ready to exploit potential

performance and cost/performance gains possible through the use of highly

parallel processing technologies. Use of parallel supercomputers appears to

be one of the most promising avenues for realizing large complex physical

simulations within realistic time and cost constraints. Although many of the

current CFD application programs are amenable to a high degree of parallel

*Computer Sciences Corp., Ames Research Center.
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computation, performance data on such codes for the current generation of

parallel computers often has been less than remarkable. This is especially

true for the class of CFD algorithms involving global data dependencies,

commonly referred to as the implicit methods. Often the bottleneck is data

motion, due to high latencies and inadequate bandwidth.

It is a common practice among computer hardware designers to use the

dense linear equation solution subroutine in the LINPACK to represent the

scientific computing workload. Unfortunately, the computational structures

in most CFD algorithms bear little resemblance to this LINPACK routine,

both in terms of its parallelization strategy as well as floating point and

memory reference features. Most CFD application codes are characterized by

their use of either regular or irregular sparse data structures and associated

algorithms. One of the reasons for this situation is the near absence of

communication between computer scientists engaged in the design of high

performance parallel computers and the computational scientists involved

in the development of CFD applications. To be effective, such exchange of

information should occur during the early stages of the design process. It

appears that one of the contributing factors to this lack of communication is

the complexity and confidentiality associated with the state-of-the-art CFD

application codes. One way to help the design process is to provide the

computer scientists with synthetic CFD application programs, which lack

the complexity of a real application, but at the same time retain all the

essential computational structures. Such synthetic application codes can be

accompanied by detailed and simpler descriptions of the algorithms involved.

In return, the performance data on such synthetic application codes can be

used to evaluate different parallel supercomputer systems at the procurement

stage by the CFD community.

Computational fluid dynamics involves the numerical solution of a sys-

tem of nonlinear partial differential equations in two or three spatial dimen-

sions, with or without time dependence. The governing partial differential

equations, referred to as the Navier-Stokes equations, represent the laws of

conservation of mass, momentum and energy applied to a fluid medium in

motion. These equations, when supplemented by appropriate boundary and

initial conditions, describe a particular physical problem. To obtain a system

of equations amenable to solution on a computer requires the discretization

of the differential equations through the use of finite difference, finite volume,

finite element or spectral methods. The inherent nonlinearities of the govern-
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ing equations necessitatethe useof iterative solution techniques. Over the
past years,a variety of efficient numerical algorithms havebeen developed,
all requiring many floating point operationsand large amounts of computer
memory to achievea solutionwith the desiredlevel of accuracy.

In current CFD applications, thereare two typesof computational meshes
used for the spatial discretization process: structured and unstructured.
Structured meshesarecharacterizedby a consistent,logical ordering of mesh
points,whoseconnectivity is associatedwith a rectilinear coordinatesystem.
Computationally_structured meshesgive rise to regularly strided memory
referencecharacteristics.In contrast, unstructured meshesoffer greaterfree-
dom in terms of mesh point distribution, but require the generation and
storageof random connectivity information. Computationally, this results
in indirect memory addressingwith random strides, with its attendant in-
creasein memory bandwidth requirements.The synthetic application codes
currently under considerationare restricted to the caseof structured meshes.

The numerical solution algorithms used in CFD codescan be broadly
categorizedas either explicit or implicit, basedon the procedure used for
the time domain integration. Among the advantagesof the explicit schemes
are the high degreeof easilyexploitable parallelismand the localizedspatial
data dependencies.Thesepropertieshaveresulted in highly efficient imple-
mentations of explicit CFD algorithms on a variety of current generation
highly parallel processors.However,the explicit schemessuffer from strin-
gent numerical stability boundsand asa result arenot optimal for problems
that require fine meshspacingfor numericalresolution. In contrast, implicit
schemeshave lessstringent stability bounds and are suitable for problems
involving highly stretchedmeshes. However,their parallel implementation
is more difficult and involve local as well as global spatial data dependen-
cies. In addition, someof the implicit algorithms possesslimited degreesof
exploitableparallelism. At present,we restrict our synthetic applications to
three different representativeimplicit schemesfound in a wide spectrum of
production CFD codesin useat NASA AmesResearchcenter.

In the remaining sectionsof this chapter, we describethe development
of a collection of synthetic application programs. First we discussthe ratio-
hale behind this approachfollowed by a completedescription of three such
synthetic applications. We alsooutline the problemsetupalongwith the as-
sociatedverification tests,when they are usedto benchmarkhighly parallel
systems.
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3.2 Rationale

In the past, vector supercomputer performance was evaluated through the
use of suites of kernels chosen to characterize generic computational struc-

tures present at a site's workload. For example, NAS Kernels [1] were selected

to characterize the computational workloads inherent in a majority of algo-

rithms used by the CFD community at Ames Research Center. However, for

highly parallel computer systems, this approach is inadequate for the reasons

outlined below.

The first stage of the pseudo application development process was the

analysis of a variety of implicit CFD codes and the identification of a set of

generic computational structures that represented a range of computational
tasks embedded in them. As a result, the following computational kernels

were selected:

1. Solution of multiple, independent systems of nondiagonally-dominant,

block tridiagonal equations with a (5 x 5) block size.

2. Solution of multiple, independent systems of nondiagonally-dominant,

scalar pentadiagonal equations.

3. Regular-sparse, block (5 x 5) matrix-vector multiplication.

4. Regular-sparse, block (5 x 5) lower and upper triangular system solu-

tion.

These kernels constitute a majority of the computationally-intensive, main

building blocks of the CFD programs designed for the numerical solution of

three-dimensional (3D), Euler/Navier-Stokes equations using finite-volume/

finite-difference discretization on structured grids. Kernels (1) and (2) are

representative of the computations associated with the implicit operator in

versions of the ARC3D code [2]. These kernels involve global data depen-

dencies. Although they are similar in many respects, there is a fundamental

difference with regard to the communication-to-computation ratio. Kernel

(3) typifies the computation of the explicit part of almost all CFD algorithms

for structured grids. Here all data dependencies are local, with either nearest

neighbor or at most next-to-nearest neighbor type dependencies. Kernel (4)

represents the computations associated with the implicit operator of a newer

class of implicit CFD algorithms, typified by the code INS3D-LU [3]. This
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kernel may contain only a limited degreeof parallelism,relative to the other
kernels.

In terms of their parallel implementation, thesekernelsrepresentvarying
characteristicswith regardto the following aspects,which are often related:

1. Available degreeof parallelism.

2. Level of parallelismand granularity.

3. Data spacepartitioning strategies.

4. Global vs. local data dependencies.

5. Inter-processorand in-processordata motion requirements.

6. Ratio of communicationto computation.

Previousresearcheffortsin adaptingalgorithms in avarietyof flow solvers
to the current generationof highly parallelprocessorshaveindicatedthat the
overallperformanceof manyCFD codesiscritically dependenton the latency
and bandwidth of both the in-processorand inter-processordata motion.
Therefore, it is important for the integrity of the benchmarkingprocessto
faithfully reproducea majority of the data motions encounteredduring the
execution of applications in which thesekernels are embedded. Also, the
nature and amount of data motion is dependenton the kernel algorithms
alongwith the associateddata structuresand the interaction of thesekernels
among themselvesaswell as with the remainder of the application that is
outside their scope.

To obtain realistic performancedata, specificationof both the incoming
and outgoing data structuresof the kernelsshouldmimic thoseoccuring in
an application program. The incoming data structure is dependenton the
sectionof the codewherethe data is generated,not on the kernel. The op-
timum data structure for the kernel may turn out to be suboptimal for the
code segmentswhere the data is generatedand vice versa. Similar consid-
erations also apply to the outgoing data structure. Allowing the freedomto
chooseoptimal incoming and outgoing data structures for the kernel as a
basisfor evaluating its performanceis liable to produceresults that arenot
applicable to a completeapplication code. The overall performanceshould
reflect the cost of data motion that occur betweenkernels.
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In order to reproducemost of the data motions encounteredin the exe-
cution of thesekernelsin a typical CFD application, weproposeembedding
them in a pseudoapplication code. It is designedfor the numerical solution
of a synthetic systemof nonlinearPartial Differential Equations (PDEs), us-
ing iterative techniquessimilar to thosefound in CFD applicationsof interest
to NASA Ames Research Center. However, it contains none of the pre- and

post-processing required by the full CFD applications, or the interactions of

the processors and the I/O subsystem. This can be regarded as a stripped-

down version of a CFD application. It retains the basic kernels that are

the principal building blocks of the application and admits a majority of the

interactions required between these basic routines. Also, the stripped-down

version does not represent a fully configured CFD application in terms of

system memory requirements. This fact has the potential for creating data

partitioning strategies during the parallel implementation of the synthetic

problem that may be inappropriate for the full application.

From the point of view of functionality, the stripped-down version does

not contain the algorithms used to apply boundary conditions as in a real

application. It is well known that often the boundary algorithms gives rise to

load imbalances and idling of processors in highly parallel systems. Due to the

simplification of the boundary algorithms, it is likely that the overall system

performance and efficiency data obtained using the stripped-down version

may be higher than that of an actual application. This effect is somewhat

mitigated by the fact that for most realistic problems, a relatively smal! time

amount of is spent dealing with boundary algorithms when compared to the

time spent in dealing with the internal mesh points. Also, most boundary

algorithms involve only local data dependencies.
Some of the other advantages of the stripped-down application vs. full

application approach are:

1. Allows benchmarking where real application codes are confidential.

2. Easier to manipulate and port from one system to another.

3. Since only the abstract algorithm is specified, facilitates new implemen-

tations that are tied closely to the architecture under consideration.

4. Allows easy addition of other existing and emerging CFD algorithms

to the benchmarking process.
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5. Easily scalable to larger problem sizes.

It should be noted that this synthetic problem differs from a real CFD

problem in the following important aspects:

1. In full CFD application codes, a non-orthogonal coordinate transfor-

mation [2] is used to map the complex physical domains to the regu-

lar computational domains, thereby introducing metric coefficients of

the transformation into the governing PDE's and boundary conditions.

Such transformations are absent in the synthetic problem, and as a re-

sult may have reduced arithmetic complexity and storage requirements.

2. A blend of nonlinear, second- and fourth-difference artificial dissipation

terms [4] is used in most of the actual CFD codes, whose coefficients

are determined based on the local changes in pressure. In the stripped-

down version, only a linear, fourth difference term is used. This reduces

the arithmetic and communication complexity needed to compute the

added higher-order dissipation terms. However, it should be noted that

computation of these artificial dissipation terms involve only local data

dependencies, similar to the matrix-vector multiplication kernel.

3. In codes where artificial dissipation is not used, upwind differencing

based on either flux-vector splitting [5, 6], flux-difference splitting [7] or

Total Variation Diminishing (TVD) schemes [8] is used. The absence of

such differencing schemes in the stripped-down version induces effects

similar to (2) on the performance data.

4. Absence of turbulence models. Computation of terms representing

some turbulence models involve a combination of local and some long-

range data dependencies. Arithmetic and communication complexity

associated with turbulence models are absent.

In addition, it needs to be emphasized that the stripped-down problem

is neither designed nor is suitable for the purposes of evaluating the conver-

gence rates and/or the applicability of various iterative linear system solvers

used in computational fluid dynamics applications. As mentioned before,

the synthetic problem differs from the real CFD applications in the following

important ways:

1. Absence of realistic boundary algorithms.
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2. Higher than normal dissipative effects.

3. Lack of upwind differencing effects, based on either flux-vector splitting

or TVD schemes.

4. Absence of geometric stiffness introduced through boundary conform-

ing coordinate transformations and highly stretched meshes.

5. Lack of evolution of weak (i.e., C °-) solutions found in real CFD ap-

plications, during the iterative process.

6. Absence of turbulence modelling effects.

Some of these effects tend to suppress the predominantly hyperbolic na-

ture exhibited by the Navier-Stokes equations, when applied to compressible

flows at high Reynolds numbers.

3.3 Mathematical Problem Definition

We consider the numerical solution of the following synthetic system of five

nonlinear partial differential equations (PDEs):

0U

8T

0E(U) 8F(U) 0G(U)
+--+

8_ 8,7 8¢
aT(u,u_) av(u,u.) 8w(u,u¢)

+ 0_ + 87 + 8¢

+H(U,U_,U,,U¢), (r,_,T/,¢) 6 Dr x D (3.5)

with the boundary conditions:

B(U,U_,U,,Uc) = VB(r,_,_,¢), (% ¢, r/, _) E Dr xSD (3.6)

and initial conditions:

U = U°(_, )/, ¢), (_,T/,¢)ED for r=0

where D E _3 is a bounded domain, 8D is its boundary and Dr

T}.
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Also, the solution to the system of PDEs:

(u(1)

u(2)

U = u (3)

u(4)

u (5) ,

defined in ( D U OD ) x D_, is a vector function of temporal variable r and

spatial variables (_, r/, () that form the orthogonal coordinate system in _,

i.e.;

u(m) =

The vector functions U B and U ° are given and/3 is the boundary oper-

ator. E, F, G, T, V, W and H are vector functions with five components

each of the form:

f e(1)

e(2)

E - e (3)

e (4) .

e(5))

and e(") = e('n)(U) etc., are prescribed functions.

The system given by equations 3.5 through 3.7 is in the 'normal-form',

i.e., it gives explicitly the time derivatives of all the dependent variables

u(X), u(2),..., u (s). Consequently, the Cauchy data at v = 0, given by equation

3.7 permits the calculation of solution U(r, _, r/, _) for r > 0.
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In the current implementation of the synthetic PDE system solver, we
seeka steady-statesolution of equations3.5 through 3.7 of the form:

: fo)

f(2)

U" = f(_,r/,() = f(a)

f(4)

k, f(s) J

where f(,,O = f(m)(_, r/, () are prescribed functions of the following form:

f(1)(_,r/,_)

fl2)(_,r/,f) i C_,lc_,_...Cl,_

f(a)(¢, r/, () = [ C2,1 C2,2 ... C2,1a e([,r/, ('): : ".. :

f(_)(_,_,¢) c_,, c_,_ ... c_,,_

f(s)(_, r/, ()

Here, the vector e is given by

e T = (1, _, r/, (, _2, r/2, (2, _3, r/a, (3, [4, 774, (4,)

and Cm,n, rrt = 1,2,... ,5 ,n = 1,2,..., 13 are specified constants. The vec-

tor forcing function tt = [h('), h (2), h (3), h (4), h(5)] T, where h ('_) = h(m)([, 77,()

is chosen such that the system of PDE's, along with the boundary and initial

conditions for H, satisfies the prescribed exact solution, U'. This implies

_[OE(__U*) OF(U*) OG(U*)
H*(_,r/,() = ' O_ + Or/ + O(

0T(U',U_) 0v(u',u;) 0W(U',U D
+ + ],

a_ Or/ a(
for (f, r/, () _ D x D,-
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The boundedspatial domain D is specified to be the interior of the unit

cube [(0, 1) x (0,1) x (0,1)], i.e.:

D = {(_,_,¢): 0 < _ < 1,0 < '7< 1,0 < _ < I}

and its boundary OD, is the surface of the unit cube given by

0D = { ({,y,_): { = 0 or 1} U { ({,T/,_): 77= 0 or 1} U { ({,_,_) : ¢"= 0 or 1}

The vector functions E, F, G, T, V and W of the synthetic problem are

specified to be the following:

E

F __

G

--U (2)

_[uC2)]_/uO)_ ¢

-[u(2)u(3)]/uO)

-[uC2)u(4)]/uO)

_[,,.,(_/_,c,_][,.,c_+ ¢]
--U(3)

• - [u(2)u(3)]/u(')

_[,.,(_]_/,.,o__ ¢

-- [U(3)U(4)]/U el)

-[_(3)/d'_][_,(_+ ¢]

--U (4)

-[uC2)u(4)]/uO)

-[u(3)uC4)]/uO)

_[_(_]_/,,c,__

--[U(4)/_(1)][U (5) + ¢]
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where

¢ ..-- k2{ 'lz(5) _ 0.5[([?,1(2)]2 .._ [,//,(3)]2 + [?./,(4)]2).]}

u(a)

T

Also

where

t(5)

d_X)(OuC')la_)

d_:)(OuC:)lO_) + (413)k_k4(O[u(:)l_,(')]lO_)

d_4)(OuC4)la_) + k_k,(a[u.)luC')]la_)

t (5)

d(S) 0 u(5)

+o.5(1- k.k_)_( [u(_)]_+ [u(_)]_[_,(_)]_+ [u(_)P)

+(l"_ O [u(2)/u(i)l:,6,0_ . , + k, ks _--_[u(5)/u 0)]

V

d(,')(ou(')lO,7)

d(,_)(OuC:)l O,fl+ k_k,(O[u(')lu(')]lO,_)

d(g)(OuC_)lO,_)+ (413)k_k,(O[uC_)h,(')]/O,7)

d(.')(Ou(')/o,1)+ k_h(O[u.)/u(')]/O,fl

v(S)
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where

v (5) = d (5) Ou (5)
,7 071

+0.5(1- klk_)_( [u(_)]_

+( l'_ O___..[u(a)lu(1)]2
,6,0rl_ , J

+ [_(3)]2+ b¢4)]2)
[uO)]_

+ k_k_[,.,(_)/,.,(')1

W

where

w (5)

d_')(O,,C')/O_:')

d_2)(Ou(2)/a¢)+ k3k4(O[u(_)/u(')]lO¢)

d_)(OuC_)lO¢)+ k_k,(a[,_C_)luO)]la¢)

d_")(Ou¢")lO0+ (4./3.)k3k,(O[uC')/u0)]/O0

w(5)

d_5)
'_ + 0,5(1 -- ]£1]g5) v_ ( ['U(1)] 2

+cL o__[uC.,)luC,)]_+ k,k_[,.,(_)/,,(,)]"6" 0_

and k,,k2, k3, k4, ks, d_"), d(_"), d_m) (m = 1,2,... ,5) are given constants.

3.3.1 The boundary conditions

The boundary conditions for the system of PDEs is prescribed to be of the

uncoupled Dirichlet type, and is specified to be compatible with U*, such

that

u(m) = f("O(_,r/,() for (r,_,q,() E D, x aD (3.8)

and m = 1,2,...,5.
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3.3.2 The initial conditions

The initial values U ° in D are set to those obtained by a transfinite, trilinear

interpolation [9] of the boundary data given by equation 3.8. Let

Then

p("_) = (1-_) u(')(o,,7,¢)+_ =(m)(1,,7,f)

= (1 - T/)u('_)((,o,() + 7/u(_)(_,1,()

= (1 -¢) =c') (_,,7,o) + ¢ =(m)(_,,7,1).

u(_)(_= 0,_,,,¢)
(m) (m) D(m) p(m) p(m)p(m)

_p_ jot _,, ,_ _._ _

+p(')_,(")p(") for (_, 7, ¢) _ D

(3.9)

(3.10)

3.4 The Numerical Scheme

Starting from the initial values prescribed by equation 3.10, we seek some

discrete approximation U_ E D to the steady-state solution U* of equations

3.5 through 3.7, through the numerical solution of the nonlinear system of

PDE's using a pseudo-time marching scheme and a spatial discretization

procedure based on finite difference approximations.

3.4.1 Implicit time differencing

The independent temporal variable r is discretized to produce the set

D¢ = {r.:n e [0, N]}

where the discrete time increment Ar is given by

r,, = r.-1 + Ar = nay

Also the discrete approximation of U on Dr is denoted by

u(_) _ u_(_) = u-
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A generalizedsingle-steptemporal differencingschemefor advancingthe
solution of equations3.5 through 3.7 is given by [10]

AU" = _AT 0AU" + AT OU" + 0___.O__AU._ I
(1+0) Or (1+0) Or (1+0)

1 _ 0)kr= + Ara] (3.11)+o[(3 -

where the forward difference operator A is defined as

AU" = U "+I-U"

With the appropriate choice for the parameters/3 and 0, equation 3.11

reproduces many of the well known two- and three-level explicit and implicit

schemes. In this particular case, we are interested only in the two-level,

first-order accurate, Euler implicit scheme given by _ = i and 0 = 0, i.e.:

ArOAU" . OU"
AU" = aT + Ar-_'-r + O[Ar=] (3.12)

Substituting for (0AU"/0r) and (0U/0r)in equation 3.12, using equations

3.5 through 3.7, we get

Ar,O(AE"t_ + AT") + O(AF" + AV") + O(AG" + Aw-)_jAU"

+Ar[

o_ & a¢
0(E+T)" a(F+V)" a(¢+w)-

+ + ] + ArH"
o_ a_ 0¢

(3.13)

where AE" = E "+1 - E" and E "+1 = E(U "+1) etc.

Equation 3.13 is nonlinear in AU" as a consequence of the fact that the

increments AE", AF", AG '_, AT", AV" and AW" are nonlinear functions

of the dependent variables U and its derivatives U¢, Un and U¢. A linear

equation with the same temporal accuracy as equation 3.13 can be obtained

by a linearization procedure using a local Taylor series expansion in time

about U" [11, 12];

0E .
= E" + (_Tr) Ar + O(Ar 2)

OE. OU.
= E" + (_-_) (_--r) Ar + O(Ar 2)

En+I

(3.14)
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Also

(aU .u -+I = u- + _;) zx_+ o(zx__)
Then, by combining equations 3.14 and 3.15, we get

OE . .+1
E "+1 -- E n+(_-_) (U -V n)+O(/kv 2)

(3.15)

or

AE" = A"(U)AU" + O(Ar 2)

whereA(U) is theJacobianmatrix(aE/au).
It should be noted that the above non-iterative time-linearization formu-

lation does not lower the formal order of accuracy of temporal discretization

in equation 3.13. However, if the steady-state solution is the only objective,

the quadratic convergence of the Newton-Raphson method (for sufficiently

good initial approximations) is recovered only as Ar ---, cx_.

Similarly, the linearization of remaining terms gives

OF .
AF" = (_--_) AU +0(AT 2)

= B"AU" + O(Ar 2)

0G ,
AG" = (_-6) AU + O(A_')

= C"AU" + O(Ar 2)

0T. . aT. .
AT_ = (TO) Au + (Tiff) Au_ + o(_ _)

= M"AU" + N"AU_ + O(Ar 2)

0(NAU)"

= (M- N_)"AU" + 0¢ + O(Ar2)

0v. . Ov. .
zxv- = (TO) _u + (TO_) Au. + o(zx__)

O(QAU)"
= (p - Q.)"AU"+ 07 + O(A_)

0w. ,, 0w. .
Aw- = (-gV) Au + (TO_) Au_ + o(A_)

o(sAu)-
= (R- S¢)"AU" + 0¢ + O(Ar 2) (3.16)
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where

OF

B(U) = O-V

OG

C(U) = 0"--ff

0T 0T ON

M(U,U_) - 0U; N(U)- 0U_; N¢(U,U¢) = O_

P(U,U,_) - OV OV OQ0u; q(u) = _U-_,; q,(u, u,)= -_.
OW OW OS

R(U,U_) - 0u ; s(u) = 0u---_; S_(U,U_)=

When the approximations given by equations 3.16 are introduced into

equation 3.13, we obtain the following linear equation for AU":

P ( + M N¢)" 0_(N) -
{I - Art 0"A - + +

O_ O_ 2 (97/

o(c + R- s¢)- + o2(s)____:-]}au.+
OC OC2

0(B+ P - Q.)" 02(Q)"
+--

Or/2

0(E + T)" 0(F + V)" + 0(G + W)"
Ar[ 0-_ + 0_ 0¢ + H']

(3.17)

It should be noted that the notation of the form

[0(A + M- N_)"IAU.
o_

is used to represent the expressions as such

0[(A + M - N¢)"AU"]
etc.

The left hand side (i.e., LHS) of equation 3.17 is referred to as the implicit

part and the right hand side (i.e., RHS) as the explicit part.

The solution at the advanced time, r - (n + 1)At, is given by

un+l _. U n .+ AU n
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The Jacobianmatrices for the problem under considerationare given by

where

q

a51 --

a52 --

0 -1 0

[_(2)/U(1)12 -- q (k2 - 2)[u(2)/u (x)] k2["(3)/u(1)]

[,,(_),,(,,)1/[<,(_)1_ -[,.,(4)/u(_)] o

a 51 a52 k2 [uC2)u (3)] / [u (1)] 2

o o

k2[uC4)l u (1)] -k2

o o

-[u(2)/u (1)] o

I_2[U(2)ll(4)] / [U(1)] 2 --_1 [U(2)/.(1) ]

[uO)]2
U(2)

{ ki[u(5)lu(1)] - 2q}[u--_]

(_._){ 3[u(2)] 2 + [u(3)] 2 + [u(4)] 2 u(5)
[72(1)1 2 } -- ki [--_]

B

where,

b51

b53

0 0 -1

[u(_)uC_)l/{uCl)]_ _[.(_)/uc_)] -[u(_)/,_(_)]

[u(a)lu(U]: - q k2[u(:)lu(X) ] (k_ - 2)[u(_)/u(1)]

[,,(_)u(_)l/[_(_)]2 o -[_(_)/u (1)]

bs1 k2[u(2)u(a)]/[u(1)] 2 b$3

u(3)

= {kl[uCS)luO) ]- 2q}[u-_],

_ (_.._2){[ u(2)]2 "4- 3[u(3)] 2 -4-[u(4)] 2 u (s)[u(1)]2 } -- kl[-_]

o o

o o

k2[u(4)lu (1)] -k 2

-[u(3)lu( 1)] 0

_2['U(3)U(4)]/[U(1)] 2 --]¢1 [U(3)/U (1) ]
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C

where

0 0 0

[u_2)u(4)]l[.O)]2 _[._4)i_,_i)] o

[u_)._')]l[uO)]_ o _[.C_)l,,_l)]

[u(4)/u(1)]__ q k2[u(2)/uo)] k2[u(3)/u(1)]

e51 k2[u(2)u(4)]/[uo)]2 k_[u(_)u(4)]l[u(1)]2

u(5) u(4)

csl = {kl[u- _1 - 2q}[u--_]

C54
UX']

-1 0

-[u(:)/u (1)] 0

-[u(3)/u (1)] 0

(k2 -- 2)[_(4)/u(1)] --k2

C54 --kl [?J(4)/B(

(M-N_) = [01

N .._

_1)

-[4/3]k3k4(u(2) /[u(_ )]2)

--k3k4('B(3)/[B(1)]2 )

B51

0

d(_)+

[4/31k_,(1/u (_))

0

/'_52

0 0 0

0 0 0

d(_)+
k3k4(1/u(1))

0

B53

0 0

d(_)+
k3k4(1/u (1))

1154 '//'55
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n52 :

n53 :

n54 --

n55 --

-[(4/3)k3k4 - kl k3k4k5]([zt(2)] 2/[u(1)] a)

--[k3k 4 -- k 1 k3k4k5]([_(3)] 2/[u(1)] 3)

--[k3k ` - k I k3k4k5](['u(4)] 2/['u(1)] 3)

-k, k_k,k_(u(_)/[u(')]_)
([4/31kak4 - kl kak4ks)(U(2) /[u(')] :)

(k3k ` - klk3k4k5)(u(3)/[_(1)] 2)

(k3k 4 - klk3k4k5)(u(4)/[It(1)] 2)

d_ 5) + (klk3k4ks)(l/_ (1))

(P-Q,7) = [0]

where

qsl

q

q52 _--

q53 =

q54 --

qs5 =

d(,1)

--k3k4( u( 2) /[u(1)] 2)

-(4/3)k_k.(,,(_)/[,,(')] _)

-k_k_(u(_)/{u(')]_)

0 0

d(,2)+ 0
k3k4( l lu(1))

0 _3)+

(4/3)k_k,(l/uC'))

0 0 d(.")+
k3k4(llu(1))

qsl q52 qs3 q54

---__ -[/_3k4 - k I k3k4k5]([?_(2)] 2/[u(1)] 3)

-[(4/3)k3k4 - klk3k4k5]([u(3)]2/[_z(1)] 3)

--[k3k ` - k I k3k4k5]([u(4)] 2/[u(')] _)
-k_k_k,k_(u(_)/ [_,o)]:)
(k3k 4 -- klk3k4ks)(,Iz(2)/[i_(1)] 2)

([413]k3k4 - klk3k4ks)(u(3)l[u(D] 2)

(k_h - k,k_k,k_)(_(')/ [_(1)]_)
d__)+ (kik_k,k_)(1/_(')

0

0

0

q55
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(R- So) = [_]

where

S

d_1) 0

_k3k4(u(2) /[uO )]2) d(2)+¢
k3k4(1/u(D)

-k_k,(_(_)/[_(_)]_) o

-(4./3.)kzk4(u(4)/[u(t)]2) 0

3)+
k3k4(1/u (1))

o

851 852 853 854 855

351 =

352 _---

353 :

354 :

355 -=

-[k3k 4 - k 1 k3k4k5]([u(2)] 2/['G(I)] 3)

-[ k3k4 - k 1 k3k4k5]([u,(3)] 2 /[..tt (1)13)

-[(413)k3k4 - kl k3k4k5]([12(4)] 2/[u(1)] 3)

-k, k_k,,k,(,_(_)/[u(1)]2)
(k3k 4 -- klk3_,4k5)(tt(2)l[tt(1)] 2)

(k3k,,- klk3k,,ks)(u(3)/[,.,¢')]2)
([4 /3]k3k, - kl k3k4ks)(u(4) /[u(1)] 2)

d_5)+ (k,k_k,ks)(l/_('))

3.4.2 Spatial discretization

The independent spatial variables (_, 77,() are discretized by covering D, ( the

closure of D), with a mesh of uniform increments ( he, h,, he ) in each of the

coordinate directions. The mesh points in the region will be identified by the

index-triple (i,j,k), where the indices i E [1, N¢], j E [1,N,] and k E [1, N¢]

correspond to the discretization of _, 77and ( coordinates, respectively.

Dh UODh = {(,_i,r/./,_'k):l<i<N_,l<_j<_N,,1 < k < N¢}
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where

_, = (i- 1)h_; r/j = (j - 1)hn; _k = (k - 1)h_ (3.18)

and the mesh widths are given by

h_ = I/(N_ - I); hn = I/(N n - I); h(:= I/(N¢- i)

with (N¢, Nn, N¢) E N being the number of mesh points in _-,_- and

C-directions, respectively.

Then, the set of interior mesh points is given by

Dh = {(_i,Y/,Ck) : 2 < i < (N_ - 1),2 < j < (N n - 1),2 _< k < (N¢ - 1)}

and the boundary mesh points by

ODh = {(_'i,)/j,Ck):ie {1,N_}}U{(_#i,)/j,Ck):

j e {l,Nn}} U {(_'i,)/j,Ck): k e {I,N(:}}

Also, the discrete approximation of U in (D x D_) is denoted by

V(_,_,Th_ ) _- U_(nAr,(i- 1)h_,(j- 1)hn,(k- 1)h_)= U_,j,k

3.4.3 Spatial differencing

The spatial derivatives in equation 3.17 are approximated by the appropri-

ate finite-difference quotients, based on the values of U_ at mesh points in

Dh U ODh. We use three-point, second-order accurate central difference ap-

proximations in each of the three coordinate directions.

In the computation of the finite-difference approximation to the RHS,

the following two general forms of spatial derivatives are encountered, i.e.:

Oe(")(c)

and
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The first form is differencedas (usingm-th componentvector function E as

an example)

= (1/2h_)[e(m)(Ui+l,j,k) - e(")(Ui_,,j,k)] + O(h_)

(3.19)

The second form is approximated as (using m-th component of vector func-

tion T as an example)

= (1/h¢){t(m)[(Ui+l'J'2"4-Ui'J'k,),(Ui+l'J'h:Ui'J'k)]

-- _(m)[(Ui,j,k "4- Ui-l,j,k),(Ui,j,k -- Ui-l,j,k)]} __ O(h_)

2 h e

(3.20)

for 2 < i < (N¢ - 1). Similar formulas are used in the 77- and _- directions

as well.

During the finite-difference approximation of the spatial derivatives in the

implicit part, following three general forms are encountered:

o[_(_,o(U)_u(O]
o_

and

0[m(m't)(U,U_)_u(')]
o_

o_2

The first form is approximated by the following:

o[_('_'°(UlAu(')ll,,j,__ [(1/2hd(_("_")(u,+_,j,_l}lAul21,j,_
o_

-[(1/2_¢){a(m")(V,_l,_,_)}]_ul_i,j,_(3.21)
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The secondform is differencedin the following compact three-point form:

O[m("'z)(V'U_)Au(t)]I_,j,k

• • + U_,j,k), (Ui+t,j,k - XlAu(O[(1/2hel{mC_")[(U'+x"'k2 he U,,s,k)ljj _+l,s,_

"q- Ui,j,k ) ), ( Ui+l,j,k -- Ui,j,k+ [(1/2he){m_"'t)[(u_+_'s'k2 he )]

m(,,,,O[(U_,j,k + U_-_,j,k ), (U_,s,k- U_-_,j,k il x^u(O
- 2 he ]J j _ i,j,k

Au(O_ [(1/2he){m(,,_,t)[(Uid,k + Ui-l,j,k),(Ui,j,k - Ui-l,j,k)]}]_ i-l,j,k
2 he

(3.22)

Finally, the third form is differenced as follows:

O_[n("r"t)(U)Au(O] li,j,k "tlAu(l)[(1/h_){n_'t)(U'+',S,_)sJ_ ,+_,S,_

- [(2/_){n(m,')(U,,s,k)}]Aull_,_
+ [(1/h_){n(",')_U '_'Au(')I, i-l,j,k ) l J i-l,j,k (3.23)

3.4.4 Added higher order dissipation

When central difference type schemes are applied to the solution of the Euler

and Navier-Stokes equations, a numerical dissipation model is included, and

it plays an important role in determining their success. The form of the

dissipation model is quite often a blending of second-difference and fourth-

difference dissipation terms [4]. The second-difference dissipation is nonlinear

and is used to prevent oscillations in the neighborhood of discontinous (i.e.,

C o ) solutions, and is negligible where the solution is smooth. The fourth-

difference dissipation term is basically linear and is included to suppress

high-frequency modes and allow the numerical scheme to converge to a steady
state. Near solution discontinuities, it is reduced to zero. It is this term that

affects the linear stability of the numericM scheme.

In the current implementation of the synthetic problem, a linear fourth-

i
\
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differencedissipation term of the following form:

[/,4 (_4un 04un (_4un

_ A L,o + %-w+ h -50-1

is added to the right hand side of equation 3.5. Here, ¢ is a specified constant.

A similar term with U n replaced by AU n will appear in the implicit operator,

if it is desirable to treat the dissipation term implicitly as well.

In the interior of the computational domain, the fourth-difference term is

computed using the following five-point approximation:

U_'+2,j,k - 4U_'+l,j,k + 6Ui_,j,k - 4Uin_l,j,k + Uin-2,j,k

(3.24)

for 4 <i < (N_ - 3).

At the first two interior mesh points belonging to either end of the compu-

tational domain, the standard five-point-difference stencil used for the fourth-

difference dissipation term is replaced by one-sided or one-sided biased sten-

cils. These modifications are implemented so as to maintain a non-positive

definite dissipation matrix for the system of difference equations [16].

Then, at i = 2:

04Un

h_-_li,j,k _ Uin+2,j,k--4Ur+l,j,k-t-5Uin, j,k

and at i = 3:

h4 04U_ _ U" _
_'l_li,.i,k _' i+2,j,k -- 4Ui+l,j,k + 6Ui,j,k -- 4U_-l,j,k

Also at i = N_ - 2:

h4 04un I.. n n n n

_--_-]t,_,k _ --4Vi+l,j,k + 6Ui,j,k -- 4Ui-l,j,k "at" Ui-2,j,k

and at i = N_ - 1:

h4 04U"'

_-_0--I_,j,k _ 5U_,j,k - 4U_'__,j,k+ U?__,S,k

Similar difference formulas are also used in the 7- and _- directions.
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Also, for vector functions T, V and W usedhere:

(M - N_) = 0, (P - Q.) = 0, (R- S<) = 0

Then, for the cases where added higher order dissipation terms are treated

only explicitly, equation 3.17 reduces to

__ a(c)- a_(s)-{I At[ o )" O2(N)" o(n)= 0:(Q)- + __ + --.]}Au-
- + a_'= + a--_ -+ a_: ai a¢"_

_ra(E + T)- a(F + V)" + a(G + w)-]
= A-L, -g-_ + a7 a¢

" 4 04un °q4Urt a4Un"

- Are[h_--g_-+h 4O---T+h_--b-_-I+ArH"
(3.25)

When the implicit treatment is extended to the added higher order dissipa-

tion terms as well, equation 3.17 takes the following form:

Ar[a(TA)- a2(N) - o_4a4(i) a(B)" as(q) -{I - _,_ + a__ °"_ + a---U-+ o,1_

a(c)- a2(s)- _h_CI)]}AU.+ a--_-+ a_?

O(E+ T)- a(r + V)" + a(G + w)-
= /w[ _ + a7 a_ ]

04Vn 4 04vn 04Vn

- AT"e[h_--_ + h, _4 + h_--_.-] + ArH" (3.26)

The modified vector forcing function is given by:

H'ff,_,¢) = _[aE(U*) aF(U') aG(U')

aT(u-,u_) av(u.,u;) aw(u-,u_)]
+ O_ + 0,7 + O_

404U* -404U* -404U*-

+ _[q-_- + h. _ + h_-_-j,
for (_,_/,¢) e D x D,

gh 4 04(1)

3.27)
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3.4.5 Computation of the explicit part--RHS

The discretized form of the explicit part of equation 3.26 is given by:

[RHS]"lij,k _, Ar[DdE + T)" + Dn(F + V)" + D¢(G + W)"]],,j,k

_ h4D4U nlh4D4U n .__Ar _ [h_n_u" + -n--n-- ¢ _ j id,k

+ Ar[H'IIij,k (3.28)

where D e , D n and Di are second-order accurate, central spatial differencing

operators, defined in Dh. At each point in the mesh, [RHS]i_j,k is a column

vector with 5 components. Discretization of added higher order dissipation

terms was already discussed in section 4.4. Here we consider the computation

of the first term in equation 3.28, using formulas given in equations 3.19 and

3.20:

[D¢(E + T)" + Dn(F + V)" + D_(G + W)"l[ij,k

= (1/2h¢)[E(Ui_ld,k) - E(Ui_I,j,k) ]

+ (1 / h_) {T[(Ui_+I J'k2+ U_J'k )' ( U_'+I ,j,kh_- U_i'j'k )]

- T[( U'_J'k +2U_'-l'j'k )' ( V_',,3,k-hcUi"--1d,k )] }

+ (1/2hn)[F(Ui:j+l,k)- F(U,_j_I,k)]

U - _ U _ U n
21- (1/h_){V[( i,j+i,k -_- Ui,j,k),( i,j+l,k- i,j,k)]

2 h,

U _ U._ (U_,s,k U _- v[( ,,s,k+ -
2 ,,3-1,k), hn

+ (I/2h¢)[G(Vi_,i,k+1)- G(U_,j,k_I)]

+ U_'j'k+12 2i- uin'j'k)' ( uin'j'k+lh_- U_'j'k )1

_ w[(U.-j,k + u_,s,k_1 u.". - U._.
2 )' ( ,j,k h_ *,3,k-l)]} (3.29)

for {(i,j,k) 6 Dh}. Also, [RHSI_,j,k = 0 for i = 1 or N¢, j = 1 or N n and

k= 1 or N¢.

This right hand side computation is equivalent in terms of both arithmetic

and communication complexity to a regular sparse block (5 × 5) matrix-vector
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multiplication, which is the kernel (c). However,its efficient implementation,
in this case,doesnot necessarilyrequirethe explicit formation and/or storage
of the regular sparsematrix.

3.4.6 Computation of the forcing vector function

Given the analytical form of U*, the forcing vector function H* can simply be

evaluated analytically as a function of _, 77, and (, using equation 3.27. This

function, along with equation 3.18, can then be used to evaluate [H*]i,j,k,

which is also a colunm vector with 5 components.

Here, we opt for a numerical evaluation of [H*]i,j,k, using [U*]_,j,k and the

finite-difference approximations of equations 3.19 and 3.20, as in the case of

equation 3.29.

* U*[H*][i,j,k _ (1/2h_)[E(Ui+ld,k) - E( ,-ld,k)]

-{- (1/h_){T[( U_+l'j'k + V*,£k),(V_+l,j,k-- V_,J,k)]
2 he

- T[( U_"S'k+2U_'-l'/'k), ( U;'J'k -hcU;-l'J'k )]}

+ (1/2hn)[F(Ui*,S+l,k) - F(Ui*,j_l,k) ]

U*. . -_- U_,j,k), ( U;,j.FI,k -- U;,j,k)]
+ (1/hn){V[( '"+1' 2 , hn

_ v[(Ui;s,k+ (u ,s,k-
2 hn

* U*+ (1/2h¢)[G(Uid,k+l)-G( i,j,k-1)]

"_- U _,j,k ) , ( U T'j'k'}" l -- U T,j,k ) ]+ (l/hel{w[(U 's' +12 he

-- W[( UT'j'k "_ UT'j'k-12 )' ( Ui*'j'k -- U_'j'k-1 )1}'
he

_4n4U*ll (3.30)h4D4U* + nCu e Jli,j,k+ e[h_D_U'+.-n-- n-

for {(i,j,k) e Dh}. The fourth difference dissipation terms are evaluated

using equation 3.24. Also, [H]_d, k = 0 for i = 1 or N¢, j = 1 or N n and k = 1

or W e.
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3.4.7 Solution of the system of linear equations

Replacing the spatial derivatives appearing in equation 3.25 by their equiv-

alent difference approximations results in a system of linear equations for

[AU"]i,j,k for i 6 [2, N¢-I],j 6 [2, N,-l] and k 6 [2, N¢-1]. Direct

solution of this system of linear equations requires a formidable matrix in-

version effort, in terms of both the processing time and storage requirements.

Therefore, AU n is obtained through the use of an iterative method. Here we

consider three such iterative methods, involving the kernels (a), (b) and (d).

All methods involve some form of approximation to the implicit operator or

the LHS of equation 3.25. For pseudo-time marching schemes, it is generally

sufficient to perform only one iteration per time step.

Approximate factorization (Beam-Warming) algorithm

In this method, the implicit operator in equation 3.25 is approximately

factored in the following manner [1, 9]:

O2(N)-  d0(B)"{I-zx [ ° + 1}× {I- 0y + ]}

x{I- A_-[0_ )" + 02(S)"]}AU"=0C------y--RHS

The Beam-Warming algorithm is to be implemented as shown below:

Initialization: Set the boundary values of Ui,j,k for (i,j, k) E ODh in accor-
0

dance with equation 3.8. Set the initial values of Ui,j, k for (i,j, k) 6 Dh in

accordance with equation 3.9. Compute the forcing function vector, H[j,k

for (i,j, k) 6 Dh, using equation 3.30.

Step 1 (Explicit part): Compute the [RHS]_,j,k for (i,j,k) 6 Dh.

Step 2 (_-Sweep of the implicit part): Form and solve the following system

of linear equations for [iU1]i,j, k for (i,j, k) 6 Oh:

(I- Ar[D_(A)" + D_(N)"lJAU1 = RHS

Step 3 (y-Sweep of the implicit part): Form and solve the following system

of linear equations for [AU2]i,j,k for (i,j, k) 6 Dh:

2 n

{I- Ar[D,(B)" + D.(Q) ]}AU2 = AU1
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Step 4 (C-Sweepof the implicit part): Form and solve the following system

of linear equations for [AU"]i,j,k for (i,j, k) e Dh:

{I-- Ar[D¢(C)" + D_(S)"]}AU" = AU2

Step 5: Update the solution

[U"+l]/d,k = [U_]i,i,k + [AU"]i,j,k, for (i,j,k) e Dh

Steps 1-5 consist of one time-stepping iteration of the Approximate Fac-

torization scheme. The solution of systems of linear equations in each of the

steps 2-4 is equivalent to the solution of multiple, independent systems of

block tridiagonal equations, with each block being a (5 x 5) matrix, in the

three coordinate directions _, r/, _ respectively. For example, the system of

equations in the _-sweep has the following block tridiagonal structure:

+ = [RHSh,s, 
[Ai,j,k][AU1]i-l,j,k + [Bid,k][AU1]i,j,k + [Ci,j,k][AU,]i+ld,k = [RHS]i,j,k

(2<i<N¢-1)

[,ANoj,k][AU1]Ne_I,j,k + [I_Ne,j,k][AU1]Ne,j,k -- [RHS]N_,j,k

where (j e [2, Nn- 1]) and (k • [2, N¢- 1]). Also, [A], [B] and [g] are (5 x 5)

matrices and [AU1]i,j,k is a (5 x 1) column vector.

Here, for 2 < i < (N_ - 1), using equations 3.21 and 3.23:

[Aid,k] = -Ar{(-1/2h¢)[A(U'_-x,j,k)] + (1/h_)[N(U_-l,J,k)]}

[B,,s,k]= I +
[C,,s,k] = -Ar{(1/2h¢)[A(U?+I,j,k)] + (1/h_)[N(Uh_,s,_,)]}

Also, [B,,j,k] = [I], [C,d,k] = [01, [AN, d,k] = [01, and [BN,,j,k] = [I].

Diagonal form of the approximate factorization algorithm

Here the approximate factorization algorithm of section 4.7.1 is modified

so as to transform the coupled systems given by the left hand side of equation

3.26 into an uncoupled diagonal form. This involves further approximations

in the treatment of the implicit operator. This diagonalization process targets

only the matrices A, B, and C in the implicit operator. Effects of other

matrices present in the implicit operator are either ignored or approximated

to conform to the resulting diagonal structure.
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The diagonalizationprocessis basedon the observationthat matricesA,
B, and C eachhavea set of real eigenvaluesand a completeset of eigenvec-
tors. Therefore,they canbe diagonalizedthrough similarity transformations
[13]:

A =

B =

C --

with

A_ =

A n --

A¢ =

where

T_A_T_ 1

T,A,T_ 1

T_A(T_ 1 (3.31)

diag [-(uc_)/u(')), -(d:)/u(')), -(uC:)/u(1)), _(_(:)/_0) + a), -(uC2)/u(1)- a)
diag [-(u(a)/uO)), -(u(3)/uO)), -(u(S)/uO)), -(uO)/u O)+ a), -(u(S)/u (1)- a)

diag [-(uC4)/u(1)), -(_(4)/d')), -(uC4)/u(1)), _(_c4)/_o) + a), -(_(4)/d') - _)

..(5) [[u(:)]:+ [u(3)]:+ [.(,)]:]}. = c,c:t _-_ - 0.5 [u(,)]_

and T_(U), T,(U), and T¢(U) are the matrices whose columns are the

eigenvectors of A, B, and C, respectively. When all other matrices except

A, B, and C are ignored, the implicit operator is given by

OA" __ OC"LHS = [I- Ar---_--][I - AT 1[I- Ar---_--] (3.32)

Substituting for A, B, and C, using equation 3.31 in equation 3.32, we get

LHS = [(T{T_'I)" - Av o(T_A¢T_'I)"]
of

0(T,A,T_-I) n

x[(T,T_) _ - Ar 0, ]

x [(T_T}-')"- Ar0(T_A<T}-I )"]AU" (3.331
aC

A modified form of equation 3.33 is obtained by moving the eigenvector

matrices T_, T,,,and T( outsidethe spatialdifferentialoperators (9/a_,01011,

t,
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and 0/0_', respectively [13]:

i n

[I -- Ar_I(T_'I)"AU"

This can be written as

0(A¢)" - ArO(Asl"lP[i - _ O(A<)"
LHS = T_[I- Ar---_]N[I- or/ _r _- ,](T_-I)nAU '_

where

1N = T_-_T,; l_ -_ = T_'_T_

The eigenvector matrices are functions of (, 77and _ and therefore this mod-

ification introduces further errors of O(Av) into the factorization process.

During the factorization process, the presence of the matrices N, Q, and

S in the implicit part were ignored. This is because, in general, the similarity

transformations used for diagonalizing A do not simultaneously diagonalize

N. The same is true for the 77 and _ factors as well. This necessitates

some ad-hoc approximate treatment of the ignored terms, which at the same

time preserves the diagonal structure of the implicit operators. Whatever

the approach used, additional approximation errors are introduced in the

treatment of the implicit operators. We chose to approximate N, Q, and S

by diagonal matrices in the implicit operators, whose values are given by the

spectral radii p(N), p(Q), and p(S), respectively [17]. In addition, we also

treat the added fourth-difference dissipation terms implicitly.

LHS = T_[I- At{ 0(A¢)" 02[P(N)"I] h_I4)}]0_ + 0__

02[p(Q)"I] , h4"04(1) }l_ Ar{O a )" + O_ 0_4xN[I

_0(A()" 02[p($)"I1 ,.1,404(I)u,r -I^T -
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The matrices T_ "1, T(, N -1, and p-1 are given by:

T_ 1 =

T¢ --

--1 _.

(a - [q/a2]) c2[u(2)/'(')]/a 2

_('(4)/[u0)]2) 0
('(3)/['(,)]_) 0

_(q _ a['(2)/'o)]) _(a- c2['(2)/.(')])
_(q + .['c_)/'cl)]) __(_ + _['(_)/'(,)])

0 0 1

0 _'(1) ['(2)/'(1)]
"(I) 0 ['(3)Iu(1)]

0 0 [u(4)/u(1)]
"(3) _'(2) [qlc2]

(o_1ooo)1 0 0 0 0

0 0 0 llvr2-llv_

o o -x/_ 112 112

0 0 llv_ t/2 112

0 0 -1 0 0
0 1 0 0 0

-1/v_ 0 0 1/2 1/2
llV_ o o 1/2 112

where _ = 1/(v'_uC')a) and a = [u(i)/(vr2a)].

_2['(3)I,,(')]I,,_ _2[,,(W'(')]I,,_ -[_21,,_]
0 (1/'(')) 0

-(1/,,(')) 0 0

--,rc2['(3)I'(')] -o'c2[,,(")I,,(I)} ,rc2

_,_['C_)l'(,)]_,,_['(,)l'C,)],_

_['(2)/_(i)] _[_(2)/'(1)]
a['(3)/u(1)] a[u(3)l'(1)]

a(['(4)/'(1)] + a) oe(['( 4)/u(1)] - a)
,_[(q+ a_)Ic_+ ,,(,,(_)I'(_))],_[(q+ ,,_)I_- a('(4)I_,(1))]j

In addition, the spectral radii of the matrices N, Q, and S are given by:

p(N) = max( d{ ')

d_2} + [4/3]k3k411/u(1}]

4_+ k_k,[11u('_]

d_"_+ k_k,,[i/,_('_]

,_+ klk_k,k_[I/,_('_])
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p(q)= max(

,(s) = max(

d(1)

4 _)+ k_h[i/_ (_)]
d__)+ [4/3]k_h[i/_(_)]

4') + k_k,[i/_O)]
4 _)+ k,k_k,k_[i/_')])

d((1)

d__ + k_k,[_/__1

_) + k_k,[i/_(_)1

d_4) + [4/3]k3k4[1/u (1)1

d__)+ k_k_k,k_[_/_o)])

The explicit part of the diagonal algorithm is exactly the same as in

equation 3.27 and all the approximations are restricted to the implicit opera-

tor. Therefore, if the diagonal algorithm converges, the steady-state solution

will be identical to the one obtained without diagonalization. However, the

convergence behavior of the diagonalized algorithm would be different.

The Diagonalized Approximate Factorization algorithm is to be imple-

mented in the following order:

Initialization: Set the boundary values of Uid,k for (i,j, k) E ODh in accor-
0

dance with equation 3.8. Set the initial values of Ui,j, k for (i,j, k) E Dh in

accordance withequation 3.9. Compute the forcing function vector, H[j,k for

(i,j, k) E Da, using equation 3.30.

Step 1 (Explicit part): Compute [RHS]_,j,k for (i, j, k) E Dh.

Step 2: Perform the matrix-vector multiplication

[AU1] = (T_-I)"[RHS]

Step 3 (_-Sweep of the Implicit part): Form and solve the following system

of linear equations for AU2:

{I- Ar[Dd&)"l- Ar[D_(p(N)"I)I + Ar[¢ h_D_(I)I}[AU2I = [AU_I
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Step 4" Perform the matrix-vector multiplication

[AU3]=
Step 5 (y-Sweep of the implicit part): Form and solve the following system

of linear equations for AU4:

{I- At[On(An)" ] - Ar[D2n(p(q)"I)] + Ar[e h4D4(I)]}[AV4] = [AU3]

Step 6: Perform the matrix-vector multiplication

[ us] =
Step 7 (_-Sweep of the implicit part): Form and solve the following system

of linear equations for AUs:

{I Ar[D_(A¢)"]- Ar[D_(p(S)"I)] + Ar[¢h_D_(I)]}[AUs] = [AUs]

Step 8: Perform the matrix-vector multiplication

[_V"] = TdAU d

Step 9: Update the solution

un+l -.. U n Jr AU n

Steps I-9 constitute of one iterationof the Diagonal Form of the Ap-

proximate Factorization algorithm. The new implicitoperators are block

pentadiagonal. However, the blocks are diagonal in form, so that the opera-

tors simplify into fiveindependent scalarpentadiagonal systems. Therefore,

each of the steps 3, 5, and 7 involve the solution of multiple, independent

systems of scalarpentadiagonal equations in the three coordinate directions

_,7/and ¢ respectively. For example, each of the five independent scalar

pentadiagonal systems in the _-sweep has the followingstructure:

Cl,j,k[/_ V2]_mj!k Jr dl,j.k[/_V2]_,_" ) Jr el.j,k[/_ V2](m, jlk --

2,j,k[ _-A 2]l,j,k Jr

(m) = rA U ](m) _ rA U ](m) (m)_,j,k[AU2]__2,S,k + oU,kt_ 2j___,j,k+ _,j,kt 2J_,_',k+ d_,j,k[AU2]_+l,j,k
U (m)Jrei,j,k[A 2]i+2,j,k

for 3 < i < (N_- 2)

a rA U 1(m) , = r A, U 1(m) _ rA U 1(m)
Nc-1,j,k[ 2JN_._3,j, k "I- l_N[.-l,j,k[ 2]N_-2,j,k Jr _Ne-1,j,kt _._ 2JN_-l,j,k

d rAU 1('_)
N_-Z,j,k[ 2JN_,j,k

a rAU 1("0 (m)
N,,j.kL 2JN,-2.j,k Jr DNq,J,k[/_U2]Nq-I,j,k Jr CNoj.k[/_U2](]Vn:!J.k

7O

[A U1] _,_'_k

(m)
[AU1]2,j,k

(,.,.,)
= [AU1]i,j,k,

rAU 1(,_)
= [ 1]Noj,k



where, (j e [2, N,- 1]), (k e [2,N_- 1]) and (m E [1,5]).

the pentadiagonal matrix are given by the following:

The elements of

CxZ,k = 1; dld,k -- 0; el,j,k = 0

b2,j,k = Ar(1/2he)[(Ae)_]_:_ ')- AT(1/h_)[p(N)"]xj,k

¢_,j,k = 1.+ aT(e/_)[p(N)"]_,s,k+ z_Te (5)

d_,s,_= -ar(1/2h_)[(&)"]_]2 ) - aT0/q)[p(N)"]3,s,_ +/W e (-4)
e2,j, k -- aT g

a_,j,k = 0.0,

ba,j,k AT(1/2h¢) [(he)"]_,_:k ") h 2 N _= -aT(I/ _)[p( ) ]2j,k+Are(-4)

N n¢_,s,_ 1.+ aT(2/q)[p( ) ]_,s,_+ aT e (6)
h -(_,_) a_(l/q)[p(N)"]4,s,_+ ate(-4)da,j,k = --AT(l/2 ¢)[(A_)],,j,k -

e3,j,k = aT e

ai,d,k

bi,j,k

Ci,j,k

di,j,k

ei,j,k

= are

" ("'=) h = N "= ar(1/2h¢)[(A{) ],_,,j,k-ar(1/ _)[p( ) ]i-,,_,k + Are(-4)

2 N n= 1.+ Ar(21h{)[p( ) ]ij,k+ arg(6)

= -AT(1/2h¢)[(A_)"]}+;,'_! k - Ar(1/h_)[p(Nl"li+a,.i,k + ar e(-4)

= are

aN_-2,j,k

b N¢- 2,j,k

CN_-2,j,k

dN_-2j,k

eN_-2,j,k

= Are

= ar(1/2h_)[(A_)"l_'_!s,k - ar(1/h_)[p(N)"lg,-a,j,k + AT e(--4)
2 n

= 1. + ar(2/h_)[p(N) ]N,-2,j,k + are(6)

-- _Ar(1/2h{)[(A{)"l(N_'_!j,k -- Ar(1/h_)[p(N)n]N,_l,j,k + AT ¢ (--4)

= 0.0.

aN_-l,j,k

b N_--1 ,j,k

CN¢-I,j,k

dN_-l,j,k

= AT ¢

= ar(1/2hd[(&)"l_"_'_'ds._- aT(1/a_)[p(N)"IN,-=,S._+ aT _(-4)
2 . Ar g (5)= 1. + Ar(e/h_)[p(N) ]N,-1,j,k "_-

= -Ar(1/2h¢)[(&)"l_'_:_2 - AT(1/h_)[p(N)"ltqj,k
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aN_,j,k -" 0.; bNe,j,k = 0.; CN_,j,k "- 1

Symmetric successive over-relaxation algorithm

In this method, the system of linear equations obtained after replacing

the spatial derivatives appearing in the implicit operator in equation 3.25 by

second-order accurate, central finite difference operators, is solved using the

symmetric, successive over-relaxation scheme. Let the linear system be given

by

[K"][AU n] = [RHS"]

where

K" = {I- Ar[D¢A" + D_N "_+ DnB '_ + D_Q n + DeC '_ + D_S"])AU _',

for (i, j, k) E Dh

It is specified that the unknowns be ordered corresponding to the gridpoints,

lexicographically, such that the index in _-direction runs fastest, followed

by the index in r/-direction and finally in C-direction. The finite-difference

discretization matrix K, resulting from such an ordering has a very regular,

banded structure. There are altogether seven block diagonals, each with a

(5 x 5) block size.
The matrix K can be written as the sum of the matrices D, Y and Z:

K '_ = D" + Y'_ + Z"

where

D n = Main block - diagonal of K"

Y" = Three sub - block - diagonals of K _

Z" = Three super - block - diagonals of K"

Therefore, D is a block-diagonal matrix, while Y and Z are strictly lower

and upper triangular, respectively. Then the point-SSOR iteration scheme

can be written as [14, 15]:

[X"][ZxU"l = [RHS]
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where

X" = w(2.-w)(D" +wY")(D")-I(D " +wZ")

= w(2. - w)(D" + wY")(I + w(D")-IZ ")

and w E (0., 2.) is the over-relaxation factor (a specified constant). The

SSOR algorithm is to be implemented in following manner:

Initialization: Set the boundary values of Ui,j,k in accordance with equation
0

3.8. Set the initial values of Uij,k in accordance with equation 3.9. Compute

the forcing function vector, H_j,k. for (i,j, k) E Dh, using equation 3.30.

Step 1 (The explicit part): Compute [RHSI_,j,k for (i,j,k) E Dh.

Step 2 (Lower triangular system solution): Form and solve the following

regular, sparse, block lower triangular system to get [AU1]:

(D" + wY")[AU1] = [RHS]

Step 3 (Upper triangular system solution): Form and solve the following

regular, sparse, block upper triangular system to get [AU"]:

(I + w(D")-lZ")[AU "1 = [AU_]

Step 4: Update the solution:

U "+I = U" + [1/w(2.- w)]AU"

Steps 1-4 constitute one complete iteration of the SSOR scheme. The

l-th block row of the matrix K has the following structure:

[.A,I[AU"],_(,,__)(N.__)+ [_,][AUn],_(N,-_)+ [C,][/',Unl,-1+ [_,][AU_],
+[E,I[AU"],+I+ [_I[_U"I,+(_,-=)+ [_,I[AU"I,+(_,-=)(_,-=)= [RHS],

where I = i + (i¢ - 2)(j - 1) + (i_ - 2)(N, - 2)(k - 1) and (i,j,k) E Dh.

The (5 x 5) matrices are given by:

-- U n[.a,] -A7-(-1/2h_)[C( ,.s,_-_)]-A7-(I/h_)[S(U?,s,_-_)1
U"[at] = -Ar(-1/2h,)[B( ij-,,k)]- Ar(1/h2,)[q(u[j-l,k)]

.-. V n[C,] --Ar(-1/2h¢)[A( i-l,j,k)]- AT(1/h_)[N(U?-I,j,k)]

2 n
[z_t] = I + AT-(2/h_)[N(U?j.k)] + AT-(2/h.)[Q(U,j,k)] + AT-(2/h_)[S(U?,s,k)]

[Et] = -AT-(1/2h_)[A(U_+Lj,k)] - AT"(1/h_)[N(U_'+xj,k) ]

--__ V n[-_1 -AT-(1/2hn)[B( ,j+l,k)]- AT-(1/h_)[Q(U_j+,,k)]

[_z] = -zxT-(1/eh_)[c(u?,j,k+l)l-/xT-(1/h_)[s(u?,s._+_)l
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Also, ,4, 13 and C are the elements in the l-th block row of the matrix Y,

whereas E,Y and _ are the elements in the/-the block row of the matrix Z.

3.5 Benchmarks

There are three benchmarks associated with the three numerical schemes

described in section 4, for the solution of system of linear equations given by

equation 3.25. Each benchmark consists of running one of the three numerical

schemes for N. time steps with given values for N_, N., N¢ and At.

3.5.1 Verification test

For each of the benchmarks, at the completion of No time steps, compute

the following:

1. Root Mean Square norms RMSR(m), of the residual vectors [RHS(m)]_,j,k ,

for m = 1,2,...,5 where n = N_, and (i,j,k) E Dh

-_(N¢-I) _--_(Nn-1)_(N_-I)IrRHS(,n)IN, _2
/-._k----2 Z-.,j=2 L_i----2 t t J(i,j,k) J

RMSR(m)= _-_ -- _-)_-_n - 2)---'_¢ -- _

S rT T*l(m)
2. Root Mean Square norms RMSE(m) of the error vectors Lt._ Ji,j,k -

[T_"I(_)_ for m = 1,2, 5wheren=Ns, and(i,j,k) EDh
_' Ji,j,kJ' " ""

I X",(N¢ 1) v"(N, -1) x-"(N_-l)J'ru-l(m) fUN, l(m) 1.2
RMSE(m) = z..,k=2 z..,j=2 z..,i=2 l.I. J(i,j,k) -- [ ](i,j,k)J

3. The numerically evaluated surface integral given by

I = 0.25{ _"_3.'2--.1 _"_i2--1•-..,3=31z-..,i=il h_hn[tPi,J,kx "4-c2i+l,j,k_ + c2i,j+x,k_ -4- ¢_i+l,jq-l,kl

"4-_i,j,k2 "_ _i+l,j,k2 2i- ¢_i,j+l,k2 2t" _i+l,j+l,k2]

"4- £-_k=klY'_k2-1z.-,,=,1_'i2"71h_h¢[_idl,k + _i+l,jl,k "Jr"¢_i,jl,k+l "dr _i+l,jl,k+l

+_id2,k + _i+l,j:,k + _ij2,k+l + _i+l&,k+l]

+ _k=k,x-'k2-1,--J=J_V'_2-Ihnh¢[_iid, k + ¢Pi,j+l,k + _i_d,_+_ + _i_d+l,k+l

+_i_d,_ + _i_,j+_,_ + _i_,j,_+_ + _i2,j+_,_+1]}
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where il, i2,jl,j2, kl and k2 are specified constants, such that 1 < il <

i2 < N_, 1 < jl < j2 < N, and 1 < kl < k2 < Arc, and

+ + [u13)]=))}
_0 "- C2{U (5) -- 0.5( U(1)

The validity of each these quantities is measured according to

IX -X l <e
Ixrl -

where Xc and Xr are the computed and reference values, respectively, and

e is the maximum allowable relative error. The value of e is specified to

be 10 -s. The values of X, are dependent on the numerical scheme under

consideration and the values specified for N_, N n, N¢, Ar and N,.

3.5.2 Benchmark 1

Class A: Perform No = 200 iterations of the Approximate Factorization Al-

gorithm, with the following parameter values:

N_ = 64; N, = 64; ArC= 64

and

Ar = 0.0008

Timing for this benchmark should begin just before the Step 1 of the first

iteration is started and end just after the Step 5 of the N,-th iteration is

complete.

Class B: Same except N_ = N, = N_ = 102 and Ar = 0.0003.

3.5.3 Benchmark 2

Class A: Perform Ns = 400 iterations of the Diagonal Form of the Approxi-

mate Factorization Algorithm, with the following parameter values:

N_ = 64; N, = 64; N¢ = 64

and

Ar = 0.0015
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Timing for this benchmarkshould begin just beforethe Step 1 of the first

iteration is started and end just after the Step 9 of the Ns-th iteration is

complete.
Class B: Same except N_ = N, = N¢ = 102 and Ar = 0.001.

3.5.4 Benchmark 3

Class A: Perform N_ - 250 iterations of the Symmetric Successive Over-

Relaxation Algorithm with the following parameter values:

N e = 64; N, = 64; N¢ = 64

and

Av = 2.0 w = 1.2

Timing for this benchmark should begin just before the Step 1 of the first

iteration is started and end just after the Step 4 of the Ns-th iteration is

complete.

Class B: Same except N_ -- N, = N( = 102.

For all benchmarks, values of the remaining constants are specified as

kl = 1.40; k2 = 0.40; k3 = 0.10; k4 = 1.00; k5 = 1.40

C1,1 = 2.0 C2,1 = 1.0 C3,1 = 2.0 C4,1 = 2.0 C5,1 = 5.0

C1,2 = 0.0 C2,2 = 0.0 C3,2 = 2.0 C4,2 = 2.0 C5,2 = 4.0

C1,3 = 0.0 62,3 = 0.0 C3,3 = 0.0 C4,3 = 0.0 C5,3 = 3.0

61,4 = 4.0 62,4 "-- 0.0 63,4 "-- 0.0 64,4 = 0.0 65,4 = 2.0

61,5 = 5.0 C2,5 = 1.0 63,5 = 0.0 64,5 = 0.0 Cs,5 = 0.1

C1,6 = 3.0 C2,e = 2.0 C3,6 = 2.0 C4,e = 2.0 C5,6 = 0.4

C1,_ = 0.5 C2,_ = 3.0 C3,_ = 3.0 C4,7 = 3.0 C5,7 = 0.3
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CI,s = 0.02 C2,s = 0.01 C3,s = 0.04 C4,a = 0.03 Cs,s = 0.05

C1,9 = 0.01 C2,o = 0.03 C3,9 = 0.03 C4,9 = 0.05 C5,9 = 0.04

C1,1o -" 0.03 C2,1o -" 0.02 C3,1o -- 0.05 C4,1o = 0.04 C5,1o = 0.03

CI,ll -- 0.5 C2,11 = 0.4 C3,11 = 0.3 C4,11 = 0.2 C5,11 "-- 0.1

C1,12 = 0.4 C2a2 = 0.3 C3,12 = 0.5 C4,12 = 0.1 C5a2 = 0.3

C1,13 - 0.3 C2,13 ---- 0.5 C3,13 = 0.4 C4,13 = 0.3 C5,13 = 0.2

d_l) = d_ 2) -- d_ 3) --- d_ 4) -- d_ 5) --" 0.75

_') =d_)=d_)=d_')=_) =0.75

_1)=_)= _)= 4,)= d?= _.oo

--[max(d_l),d_l),d_l))]/4.0
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